OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 728–736

Opposed-view dark-field digital holographic microscopy

Ahmad Faridian, Giancarlo Pedrini, and Wolfgang Osten  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 728-736 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scattering and absorption belong to the major problems in imaging the internal layers of a biological specimen. Due to the structural inhomogeneity of the specimen, the distribution of the structures in the upper layers of a given internal structure of interest is different from the lower layers that may result in different interception of scattered light, falling into the angular aperture of the microscope objective, from the object in each imaging view. Therefore, different spatial frequencies of the scattered light can be acquired from different (top and bottom) views. We have arranged an opposed-view dark-field digital holographic microscope (DHM) to collect the scattered light concurrently from both views with the aim to increase the contrast of internal structures and improve the signal-to-noise ratio. Implementing a DHM system gives the possibility to implement digital refocusing process and obtain multilayer images from each side without a depth scan of the object. The method is explained and the results are presented exemplary for a Drosophila embryo.

© 2014 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(180.3170) Microscopy : Interference microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: November 27, 2013
Revised Manuscript: January 22, 2014
Manuscript Accepted: February 5, 2014
Published: February 12, 2014

Ahmad Faridian, Giancarlo Pedrini, and Wolfgang Osten, "Opposed-view dark-field digital holographic microscopy," Biomed. Opt. Express 5, 728-736 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Abbott, “Cell culture: Biology’s new dimension,” Nature424(6951), 870–872 (2003). [CrossRef] [PubMed]
  2. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005). [CrossRef] [PubMed]
  3. M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
  4. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  5. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A2(2), 121–127 (1985). [CrossRef]
  6. M. Gu, “Principles of Three Dimensional Imaging in Confocal Microscopes,” Singapore, World Scientific Publishing Co Pte Ltd., 1996.
  7. J. Lim, H. Ding, M. Mir, R. Zhu, K. Tangella, and G. Popescu, “Born approximation model for light scattering by red blood cells,” Biomed. Opt. Express2(10), 2784–2791 (2011). [CrossRef] [PubMed]
  8. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  9. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  10. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012). [CrossRef] [PubMed]
  11. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002). [CrossRef] [PubMed]
  12. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express18(13), 13708–13719 (2010). [CrossRef] [PubMed]
  13. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett.31(2), 178–180 (2006). [CrossRef] [PubMed]
  14. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007). [CrossRef] [PubMed]
  15. C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei, “Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy,” J. Biomed. Opt.14(3), 034016 (2009). [CrossRef] [PubMed]
  16. A. Faridian, G. Pedrini, and W. Osten, “High-contrast multilayer imaging of biological organisms through dark-field digital refocusing,” J. Biomed. Opt.18(8), 086009 (2013). [CrossRef] [PubMed]
  17. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010). [CrossRef] [PubMed]
  18. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express19(8), 7289–7298 (2011). [CrossRef] [PubMed]
  19. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147(1), 3–11 (2004). [CrossRef] [PubMed]
  20. R. ChmelÍk, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006). [CrossRef]
  21. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express15(21), 13640–13648 (2007). [CrossRef] [PubMed]
  22. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205(2), 165–176 (2002). [CrossRef] [PubMed]
  23. D. Fedorov, B. Sumengen, and B. S. Manjunath, “Mosaicking based framework for local enhancement of bio imagery,” Workshop on Multiscale Biological Imaging, Data Mining & Informatics, Santa Barbara, CA, USA, Sep. 2006.
  24. P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2(4), 217–236 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4605 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited