OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 737–751

Microdroplet temperature calibration via thermal dissociation of quenched DNA oligomers

Eric W. Hall and Gregory W. Faris  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 737-751 (2014)
http://dx.doi.org/10.1364/BOE.5.000737


View Full Text Article

Enhanced HTML    Acrobat PDF (2666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of microscale analytical techniques has created an increasing demand for reliable and accurate heating at the microscale. Here, we present a novel method for calibrating the temperature of microdroplets using quenched, fluorescently labeled DNA oligomers. Upon melting, the 3′ fluorophore of the reporter oligomer separates from the 5′ quencher of its reverse complement, creating a fluorescent signal recorded as a melting curve. The melting temperature for a given oligomer is determined with a conventional quantitative polymerase chain reaction (qPCR) instrument and used to calibrate the temperature within a microdroplet, with identical buffer concentrations, heated with an infrared laser. Since significant premelt fluorescence prevents the use of a conventional (single-term) sigmoid or logistic function to describe the melting curve, we present a three-term sigmoid model that provides a very good match to the asymmetric fluorescence melting curve with premelting. Using mixtures of three oligomers of different lengths, we fit multiple three-term sigmoids to obtain precise comparison of the microscale and macroscale fluorescence melting curves using “extrapolated two-state” melting temperatures.

© 2014 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Biosensors and Molecular Diagnostics

History
Original Manuscript: October 9, 2013
Revised Manuscript: February 4, 2014
Manuscript Accepted: February 7, 2014
Published: February 13, 2014

Citation
Eric W. Hall and Gregory W. Faris, "Microdroplet temperature calibration via thermal dissociation of quenched DNA oligomers," Biomed. Opt. Express 5, 737-751 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-737


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. T. Atalay, S. Vermeir, D. Witters, N. Vergauwe, B. Verbruggen, P. Verboven, B. M. Nicolaï, and J. Lammertyn, “Microfluidic analytical systems for food analysis,” Trends Food Sci. Technol.22(7), 386–404 (2011). [CrossRef]
  2. D. Wlodkowic and J. M. Cooper, “Tumors on chips: Oncology meets microfluidics,” Curr. Opin. Chem. Biol.14(5), 556–567 (2010). [CrossRef] [PubMed]
  3. G. B. Salieb-Beugelaar, G. Simone, A. Arora, A. Philippi, and A. Manz, “Latest developments in microfluidic cell biology and analysis systems,” Anal. Chem.82(12), 4848–4864 (2010). [CrossRef] [PubMed]
  4. S. Mondal and V. Venkataraman, “Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR,” J. Biochem. Biophys. Methods70(5), 773–777 (2007). [CrossRef] [PubMed]
  5. G. Velve Casquillas, C. Fu, M. Le Berre, J. Cramer, S. Meance, A. Plecis, D. Baigl, J.-J. Greffet, Y. Chen, M. Piel, and P. T. Tran, “Fast microfluidic temperature control for high resolution live cell imaging,” Lab Chip11(3), 484–489 (2011). [CrossRef] [PubMed]
  6. C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24(1), 94–98 (2012). [CrossRef] [PubMed]
  7. K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip10(13), 1725–1728 (2010). [CrossRef] [PubMed]
  8. B. Selva, J. Marchalot, and M.-C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng.19(6), 065002 (2009). [CrossRef]
  9. H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “micro-Hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip7(11), 1509–1514 (2007). [CrossRef] [PubMed]
  10. E. M. Graham, K. Iwai, S. Uchiyama, A. P. de Silva, S. W. Magennis, and A. C. Jones, “Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy,” Lab Chip10(10), 1267–1273 (2010). [CrossRef] [PubMed]
  11. H. Kim, S. Dixit, C. J. Green, and G. W. Faris, “Nanodroplet real-time PCR system with laser assisted heating,” Opt. Express17(1), 218–227 (2009). [CrossRef] [PubMed]
  12. H. Kim, S. Vishniakou, and G. W. Faris, “Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays,” Lab Chip9(9), 1230–1235 (2009). [CrossRef] [PubMed]
  13. K. Hettiarachchi, H. Kim, and G. Faris, “Optical manipulation and control of real-time PCR in cell encapsulating microdroplets by IR laser,” Microfluid. Nanofluid.13(6), 967–975 (2012). [CrossRef]
  14. H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, “Development of 1480 nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition,” Jpn. J. Appl. Phys.47(6), 5212–5216 (2008). [CrossRef]
  15. R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, “Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA,” Anal. Chem.70(20), 4361–4368 (1998). [CrossRef] [PubMed]
  16. A. F. R. Hühmer and J. P. Landers, “Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes,” Anal. Chem.72(21), 5507–5512 (2000). [CrossRef] [PubMed]
  17. J. Coppeta and C. Rogers, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements,” Exp. Fluids25(1), 1–15 (1998). [CrossRef]
  18. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem.73(17), 4117–4123 (2001). [CrossRef] [PubMed]
  19. M. A. Bennet, P. R. Richardson, J. Arlt, A. McCarthy, G. S. Buller, and A. C. Jones, “Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy,” Lab Chip11(22), 3821–3828 (2011). [CrossRef] [PubMed]
  20. J. A. Richardson, T. Morgan, M. Andreou, and T. Brown, “Use of a large Stokes-shift fluorophore to increase the multiplexing capacity of a point-of-care DNA diagnostic device,” Analyst (Lond.)138(13), 3626–3628 (2013). [CrossRef] [PubMed]
  21. S. A. E. Marras, F. R. Kramer, and S. Tyagi, “Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes,” Nucleic Acids Res.30(21), 122e (2002). [CrossRef] [PubMed]
  22. M. Johansson, “Choosing reporter-quencher pairs for efficient quenching through formation of intramolecular dimers,” in Fluorescent Energy Transfer Nucleic Acid Probes, V. Didenko, ed. (Humana, 2006), pp. 17–29.
  23. J. Jung, L. Chen, S. Lee, S. Kim, G. H. Seong, J. Choo, E. K. Lee, C.-H. Oh, and S. Lee, “Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel,” Anal. Bioanal. Chem.387(8), 2609–2615 (2007). [CrossRef] [PubMed]
  24. A. T. Jonstrup, J. Fredsøe, and A. H. Andersen, “DNA hairpins as temperature switches, thermometers and ionic detectors,” Sensors (Basel)13(5), 5937–5944 (2013). [CrossRef] [PubMed]
  25. Y. You, A. V. Tataurov, and R. Owczarzy, “Measuring thermodynamic details of DNA hybridization using fluorescence,” Biopolymers95(7), 472–486 (2011). [CrossRef] [PubMed]
  26. J.-L. Mergny and L. Lacroix, “Analysis of thermal melting curves,” Oligonucleotides13(6), 515–537 (2003). [CrossRef] [PubMed]
  27. M. Peyrard, S. Cuesta-López, and G. James, “Nonlinear analysis of the dynamics of DNA breathing,” J. Biol. Phys.35(1), 73–89 (2009). [CrossRef] [PubMed]
  28. F. J. Richards, “A flexible growth function for empirical use,” J. Exp. Bot.10(2), 290–301 (1959). [CrossRef]
  29. J. H. Ricketts and G. A. Head, “A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies,” Am. J. Physiol.277, R441–R454 (1999).
  30. J. SantaLucia., “A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics,” Proc. Natl. Acad. Sci. U.S.A.95(4), 1460–1465 (1998). [CrossRef] [PubMed]
  31. L. Movileanu, J. M. Benevides, and G. J. Thomas., “Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT),” Biopolymers63(3), 181–194 (2002). [CrossRef] [PubMed]
  32. J. Jung and A. Van Orden, “A three-state mechanism for DNA hairpin folding characterized by multiparameter fluorescence fluctuation spectroscopy,” J. Am. Chem. Soc.128(4), 1240–1249 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited