OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 752–762

Conical scan polarization-sensitive optical coherence tomography

Zenghai Lu, Deepa Kasaragod, and Stephen J Matcher  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 752-762 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a new articular cartilage imaging technique with potential for clinical arthroscopic use, by supplementing the variable-incidence-angle polarization-sensitive optical coherence tomography method previously developed by us with a conical beam scan protocol. The technique is validated on bovine tendon by comparing experimental data with simulated data generated using the extended Jones matrix calculus. A unique capability of this new optical technique is that it can locate the “brushing direction” of collagen fibers in articular cartilage, which is structural information that extends beyond established methods such as split-line photography or birefringent fast-axis measurement in that it is uniquely defined over the full azimuthal-angle range of (-π, + π). The mapping of this direction over the cartilage surface may offer insights into the optimal design of tissue-engineering scaffolds for cartilage repair.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Optical Coherence Tomography

Original Manuscript: October 11, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: December 20, 2013
Published: February 18, 2014

Zenghai Lu, Deepa Kasaragod, and Stephen J Matcher, "Conical scan polarization-sensitive optical coherence tomography," Biomed. Opt. Express 5, 752-762 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992). [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  4. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, “Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography,” Opt. Lett.31(15), 2305–2307 (2006). [CrossRef] [PubMed]
  5. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett.24(5), 300–302 (1999). [CrossRef] [PubMed]
  6. S. J. Matcher, C. P. Winlove, and S. V. Gangnus, “The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography,” Phys. Med. Biol.49(7), 1295–1306 (2004). [CrossRef] [PubMed]
  7. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45(8), 2606–2612 (2004). [CrossRef] [PubMed]
  8. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13(1), 014013 (2008). [CrossRef] [PubMed]
  9. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci.49(12), 5366–5372 (2008). [CrossRef] [PubMed]
  10. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2(8), 2392–2402 (2011). [CrossRef] [PubMed]
  11. N. Ugryumova, J. Jacobs, M. Bonesi, and S. J. Matcher, “Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography,” Osteoarthritis Cartilage17(1), 33–42 (2009). [CrossRef] [PubMed]
  12. S. J. Matcher, “A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage,” J. Appl. Phys.105(10), 102041 (2009). [CrossRef]
  13. N. A. Patel, J. Zoeller, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “Monitoring osteoarthritis in the rat model using optical coherence tomography,” IEEE Trans. Med. Imaging24(2), 155–159 (2005). [CrossRef] [PubMed]
  14. T. Xie, S. Guo, J. Zhang, Z. Chen, and G. M. Peavy, “Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography,” Lasers Surg. Med.38(9), 852–865 (2006). [CrossRef] [PubMed]
  15. A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg.73, 795–801 (1991).
  16. S. Kamalanathan and N. D. Broom, “The biomechanical ambiguity of the articular surface,” J. Anat.183(Pt 3), 567–578 (1993). [PubMed]
  17. Y. Sasazaki, R. Shore, and B. B. Seedhom, “Deformation and failure of cartilage in the tensile mode,” J. Anat.208(6), 681–694 (2006). [CrossRef] [PubMed]
  18. M. A. Wallenburg, M. F. G. Wood, N. Ghosh, and I. A. Vitkin, “Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy,” Opt. Lett.35(15), 2570–2572 (2010). [CrossRef] [PubMed]
  19. Z. H. Lu, D. K. Kasaragod, and S. J. Matcher, “Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography,” Phys. Med. Biol.56(4), 1105–1122 (2011). [CrossRef] [PubMed]
  20. D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express3(3), 378–387 (2012). [CrossRef] [PubMed]
  21. M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express18(4), 3392–3403 (2010). [CrossRef] [PubMed]
  22. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17(25), 22704–22717 (2009). [CrossRef] [PubMed]
  23. G. Anzolin, A. Gardelein, M. Jofre, G. Molina-Terriza, and M. W. Mitchell, “Polarization change induced by a galvanometric optical scanner,” J. Opt. Soc. Am. A27(9), 1946–1952 (2010). [CrossRef] [PubMed]
  24. D. K. Kasaragod, Z. Lu, and S. J. Matcher, “Comparative study of the angle-resolved backscattering properties of collagen fibers in bovine tendon and cartilage,” J. Biomed. Opt.16(8), 080501 (2011). [CrossRef] [PubMed]
  25. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography,” Appl. Opt.37(25), 6026–6036 (1998). [CrossRef] [PubMed]
  26. J. M. Clark, “The organisation of collagen fibrils in the superficial zones of articular cartilage,” J. Anat.171, 117–130 (1990). [PubMed]
  27. P. Yeh, Optical Waves in Layered Media (New York: Wiley, 1988).
  28. T. Serra, J. A. Planell, and M. Navarro, “High-resolution PLA-based composite scaffolds via 3-D printing technology,” Acta Biomater.9(3), 5521–5530 (2013). [CrossRef] [PubMed]
  29. W. Wilson, C. C. van Donkelaar, B. van Rietbergen, and R. Huiskes, “A fibril-reinforced poroviscoelastic swelling model for articular cartilage,” J. Biomech.38(6), 1195–1204 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited