OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 763–777

Hadamard multiplexed fluorescence tomography

Ali Behrooz, Ali A. Eftekhar, and Ali Adibi  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 763-777 (2014)
http://dx.doi.org/10.1364/BOE.5.000763


View Full Text Article

Enhanced HTML    Acrobat PDF (1499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Depth-resolved three-dimensional (3D) reconstruction of fluorophore-tagged inclusions in fluorescence tomography (FT) poses a highly ill-conditioned problem as depth information must be extracted from boundary data. Due to the ill-posed nature of the FT inverse problem, noise and errors in the data can severely impair the accuracy of the 3D reconstructions. The signal-to-noise ratio (SNR) of the FT data strongly affects the quality of the reconstructions. Additionally, in FT scenarios where the fluorescent signal is weak, data acquisition requires lengthy integration times that result in excessive FT scan periods. Enhancing the SNR of FT data contributes to the robustness of the 3D reconstructions as well as the speed of FT scans. A major deciding factor in the SNR of the FT data is the power of the radiation illuminating the subject to excite the administered fluorescent reagents. In existing single-point illumination FT systems, the source power level is limited by the skin maximum radiation exposure levels. In this paper, we introduce and study the performance of a multiplexed fluorescence tomography system with orders-of-magnitude enhanced data SNR over existing systems. The proposed system allows for multi-point illumination of the subject without jeopardizing the information content of the FT measurements and results in highly robust reconstructions of fluorescent inclusions from noisy FT data. Improvements offered by the proposed system are validated by numerical and experimental studies.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: October 21, 2013
Revised Manuscript: January 10, 2014
Manuscript Accepted: February 5, 2014
Published: February 18, 2014

Citation
Ali Behrooz, Ali A. Eftekhar, and Ali Adibi, "Hadamard multiplexed fluorescence tomography," Biomed. Opt. Express 5, 763-777 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-763


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng.8(1), 1–33 (2006). [CrossRef] [PubMed]
  2. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002). [CrossRef] [PubMed]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002). [CrossRef] [PubMed]
  4. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007). [CrossRef] [PubMed]
  5. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007). [CrossRef] [PubMed]
  6. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46(10), 1679–1685 (2007). [CrossRef] [PubMed]
  7. J. C. Baritaux, K. Hassler, and M. Unser, “An efficient numerical method for general Lp regularization in fluorescence molecular tomography,” IEEE Trans. Med. Imaging29(4), 1075–1087 (2010). [CrossRef] [PubMed]
  8. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010). [CrossRef] [PubMed]
  9. A. Behrooz, H. M. Zhou, A. A. Eftekhar, and A. Adibi, “Total variation regularization for 3D reconstruction in fluorescence tomography: experimental phantom studies,” Appl. Opt.51(34), 8216–8227 (2012). [CrossRef] [PubMed]
  10. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources, Plenum, New York (1980).
  11. ANSI Standard Z136.1, American National Standard for the Safe Use of Lasers, American National Standards Institute, Inc., New York (2000).
  12. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).
  13. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol.42(5), 841–853 (1997). [CrossRef] [PubMed]
  14. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001). [CrossRef]
  15. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt.37(22), 5337–5343 (1998). [CrossRef] [PubMed]
  16. M. Harwit, and N. J. A. Sloane, Hadamard Transform Optics, Academic Press, New York (1979).
  17. L. Streeter, G. R. Burling-Claridge, M. J. Cree, and R. Künnemeyer, “Optical full Hadamard matrix multiplexing and noise effects,” Appl. Opt.48(11), 2078–2085 (2009). [CrossRef] [PubMed]
  18. R. A. DeVerse, R. M. Hammaker, and W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc.19(2), 177–186 (1999). [CrossRef]
  19. V. V. Fedorov, Theory of Optimal Experiments, Academic Press, New York (1972).
  20. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol.29(3), 471–481 (1970). [CrossRef] [PubMed]
  21. A. Behrooz, C. Kuo, H. Xu, and B. W. Rice, “Adaptive row-action inverse solver for fast noise-robust 3D reconstructions in bioluminescence tomography: theory and dual-modality optical/CT in vivo studies,” J. Biomed. Opt.18(7), 076010 (2013). [CrossRef] [PubMed]
  22. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003). [CrossRef] [PubMed]
  23. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol.42(10), 1971–1979 (1997). [CrossRef] [PubMed]
  24. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992). [CrossRef] [PubMed]
  25. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation,” Opt. Lett.26(12), 893–895 (2001). [CrossRef] [PubMed]
  26. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express14(14), 6516–6534 (2006). [CrossRef] [PubMed]
  27. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys.33(5), 1299–1310 (2006). [CrossRef] [PubMed]
  28. J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: theory and simulation studies,” Phys. Med. Biol.55(10), 2961–2982 (2010). [CrossRef] [PubMed]
  29. V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010). [CrossRef] [PubMed]
  30. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  31. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010). [CrossRef] [PubMed]
  32. N. Ducros, C. D’andrea, G. Valentini, T. Rudge, S. Arridge, and A. Bassi, “Full-wavelet approach for fluorescence diffuse optical tomography with structured illumination,” Opt. Lett.35(21), 3676–3678 (2010). [CrossRef] [PubMed]
  33. C. D’Andrea, N. Ducros, A. Bassi, S. Arridge, and G. Valentini, “Fast 3D optical reconstruction in turbid media using spatially modulated light,” Biomed. Opt. Express1(2), 471–481 (2010). [CrossRef] [PubMed]
  34. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010). [CrossRef] [PubMed]
  35. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009). [CrossRef] [PubMed]
  36. V. Venugopal and X. Intes, “Adaptive wide-field optical tomography,” J. Biomed. Opt.18(3), 036006 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited