OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 778–787

TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

József Sinkó, Róbert Kákonyi, Eric Rees, Daniel Metcalf, Alex E. Knight, Clemens F. Kaminski, Gábor Szabó, and Miklós Erdélyi  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 778-787 (2014)
http://dx.doi.org/10.1364/BOE.5.000778


View Full Text Article

Enhanced HTML    Acrobat PDF (2031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 3, 2013
Revised Manuscript: February 7, 2014
Manuscript Accepted: February 11, 2014
Published: February 18, 2014

Citation
József Sinkó, Róbert Kákonyi, Eric Rees, Daniel Metcalf, Alex E. Knight, Clemens F. Kaminski, Gábor Szabó, and Miklós Erdélyi, "TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy," Biomed. Opt. Express 5, 778-787 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).
  3. J. Lakovich, Principles of Fluorescence Spectroscopy (Plenum, 1986).
  4. S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  5. E. Abbe, “Beiträge zur theorie des Mikroskops und der mikro-skopischer Wahrnehmung,” Arch. Mikrosk. Anat.9(1), 413–418 (1873). [CrossRef]
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  7. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods4(11), 915–918 (2007). [CrossRef] [PubMed]
  8. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  9. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  10. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8(12), 1027–1036 (2011). [CrossRef] [PubMed]
  11. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  12. T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc.4(3), 291–308 (2009). [CrossRef] [PubMed]
  13. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  14. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011). [CrossRef] [PubMed]
  15. S. van de Linde, S. Wolter, M. Heilemann, and M. Sauer, “The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging,” J. Biotechnol.149(4), 260–266 (2010). [CrossRef] [PubMed]
  16. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008). [CrossRef] [PubMed]
  17. D. Baddeley, D. Crossman, S. Rossberger, J. E. Cheyne, J. M. Montgomery, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “4D Super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues,” PLoS ONE6(5), e20645 (2011). [CrossRef] [PubMed]
  18. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, G. Grover, A. Agrawal, R. Piestun, and W. E. Moerner, “Simultaneous, accurate measurement of the 3D position and orientation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.109(47), 19087–19092 (2012). [CrossRef] [PubMed]
  19. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B20(3), 554–559 (2003). [CrossRef]
  20. S. Stallinga and B. Rieger, “Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model,” Opt. Express20(6), 5896–5921 (2012). [CrossRef] [PubMed]
  21. E. A. Mukamel and M. J. Schnitzer, “Unified resolution bounds for conventional and stochastic localization fluorescence microscopy,” Phys. Rev. Lett.109(16), 168102 (2012). [CrossRef] [PubMed]
  22. E. J. Rees, M. Erdelyi, D. Pinotsi, A. Knight, D. Metcalf, and C. F. Kaminski, “Blind assessment of localization microscopy image resolution,” Opt. Nanoscopy1(1), 12 (2012), doi:. [CrossRef]
  23. http://laser.cheng.cam.ac.uk/wiki/index.php/Resources
  24. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010). [CrossRef] [PubMed]
  25. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. Van De Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010). [CrossRef] [PubMed]
  26. H. Lodish, D. Baltimore, A. Berk, S. L. Zipurssky, P. Matsudaira, and J. Darnell, Molecular Cell Biology (Freeman, 1995).
  27. L. Yang, A. R. Dun, K. J. Martin, Z. Qiu, A. Dunn, G. J. Lord, W. Lu, R. R. Duncan, and C. Rickman, “Secretory vesicles are preferentially targeted to areas of low molecular SNARE density,” PLoS ONE7(11), e49514 (2012), doi:. [CrossRef] [PubMed]
  28. E. J. Rees, M. Erdelyi, G. S. K. Schierle, A. Knight, and C. F. Kaminski, “Elements of image processing in localization microscopy,” J. Opt.15(9), 094012 (2013). [CrossRef]
  29. G. S. Kaminski Schierle, S. van de Linde, M. Erdelyi, E. K. Esbjörner, T. Klein, E. Rees, C. W. Bertoncini, C. M. Dobson, M. Sauer, and C. F. Kaminski, “In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging,” J. Am. Chem. Soc.133(33), 12902–12905 (2011). [CrossRef] [PubMed]
  30. S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, and M. Sauer, “Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging,” Photochem. Photobiol. Sci.10(4), 499–506 (2011). [CrossRef] [PubMed]
  31. S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9(2), 195–200 (2011). [CrossRef] [PubMed]
  32. S. Stallinga and B. Rieger, “Accuracy of the Gaussian point spread function model in 2D localization microscopy,” Opt. Express18(24), 24461–24476 (2010). [CrossRef] [PubMed]
  33. http://www.andor.com/scientific-cameras/ixon-emccd-camera-series
  34. http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html
  35. http://titan.physx.u-szeged.hu/~adoptim/
  36. M. Erdelyi, E. J. Rees, D. Metcalf, G. S. K. Schierle, L. Dudas, J. Sinko, A. E. Knight, and C. F. Kaminski, “Correcting chromatic offset in multicolor super-resolution localization microscopy,” Opt. Express21(9), 10978–10988 (2013). [CrossRef] [PubMed]
  37. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2(5), 1377–1393 (2011). [CrossRef] [PubMed]
  38. D. J. Metcalf, R. Edwards, N. Kumarswami, and A. E. Knight, “Test samples for optimizing STORM super-resolution microscopy,” J. Vis. Exp.79, 50579 (2013), doi:. [CrossRef] [PubMed]
  39. P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Identification of clustering artifacts in photoactivated localization microscopy,” Nat. Methods8(7), 527–528 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited