OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 832–847

Optical-thermal light-tissue interactions during photoacoustic breast imaging

Taylor Gould, Quanzeng Wang, and T. Joshua Pfefer  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 832-847 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light-tissue interactions during photoacoustic imaging, including dynamic heat transfer processes in and around vascular structures, are not well established. A three-dimensional, transient, optical-thermal computational model was used to simulate energy deposition, temperature distributions and thermal damage in breast tissue during exposure to pulsed laser trains at 800 and 1064 nm. Rapid and repetitive temperature increases and thermal relaxation led to superpositioning effects that were highly dependent on vessel diameter and depth. For a ten second exposure at established safety limits, the maximum single-pulse and total temperature rise levels were 0.2°C and 5.8°C, respectively. No significant thermal damage was predicted. The impact of tissue optical properties, surface boundary condition and irradiation wavelength on peak temperature location and temperature evolution with time are discussed.

© 2014 Optical Society of America

OCIS Codes
(140.3360) Lasers and laser optics : Laser safety and eye protection
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: December 13, 2013
Revised Manuscript: January 26, 2014
Manuscript Accepted: January 29, 2014
Published: February 24, 2014

Taylor Gould, Quanzeng Wang, and T. Joshua Pfefer, "Optical-thermal light-tissue interactions during photoacoustic breast imaging," Biomed. Opt. Express 5, 832-847 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Piras, W. Xia, W. Steenbergen, T. van Leeuwen, and S. G. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Quantum Electron.16(4), 730–739 (2010). [CrossRef]
  2. S. Yang, D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen, “Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging,” Appl. Phys. Lett.90(24), 243902 (2007). [CrossRef]
  3. Z. Wang, S. Ha, and K. Kim, “Evaluation of finite element based simulation model of photoacoustics in biological tissues,” Proc. SPIE8320, 83201L (2012). [CrossRef]
  4. S. Sethuraman, S. R. Aglyamov, R. W. Smalling, and S. Y. Emelianov, “Remote temperature estimation in intravascular photoacoustic imaging,” Ultrasound Med. Biol.34(2), 299–308 (2008). [CrossRef] [PubMed]
  5. M. Jaunich, S. Raje, K. Kim, K. Mitra, and Z. Guo, “Bio-heat transfer analysis during short pulse laser irradiation of tissues,” Int. J. Heat Mass Transfer51(23-24), 5511–5521 (2008). [CrossRef]
  6. F. Fanjul-Vélez and J. L. Arce-Diego, “Modeling thermotherapy in vocal cords novel laser endoscopic treatment,” Lasers Med. Sci.23(2), 169–177 (2008). [CrossRef] [PubMed]
  7. T. J. Pfefer, K. F. Chan, D. X. Hammer, and A. J. Welch, “Dynamics of pulsed holmium:YAG laser photocoagulation of albumen,” Phys. Med. Biol.45(5), 1099–1114 (2000). [CrossRef] [PubMed]
  8. M. Milanič and B. Majaron, “Energy deposition profile in human skin upon irradiation with a 1,342 nm Nd:YAP laser,” Lasers Surg. Med.45(1), 8–14 (2013). [CrossRef] [PubMed]
  9. K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007). [CrossRef]
  10. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45(8), 1866–1875 (2006). [CrossRef] [PubMed]
  11. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol.50(18), 4409–4428 (2005). [CrossRef] [PubMed]
  12. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt.46(2), 262–272 (2007). [CrossRef] [PubMed]
  13. B. Tavakoli, P. D. Kumavor, A. Aguirre, and Q. Zhu, “Effect of ultrasound transducer face reflectivity on the light fluence inside a turbid medium in photoacoustic imaging,” J. Biomed. Opt.15(4), 046003 (2010). [CrossRef] [PubMed]
  14. S. A. Ermilov, M. P. Fronheiser, H. P. Brecht, R. Su, A. Conjusteau, K. Mehta, P. Otto, and A. A. Oraevksy, “Development of Laser Optoacoustic and Ultrasonic Imaging System for breast cancer utilizing handheld array probes,” Proc. SPIE7177, 717703 (2009). [CrossRef]
  15. M. A. Yaseen, S. A. Ermilov, H.-P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010). [CrossRef] [PubMed]
  16. Z. Zhao and R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE4707, 153–157 (2002). [CrossRef]
  17. Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt.48(17), 3204–3211 (2009). [CrossRef] [PubMed]
  18. G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. Treat.4(5), 559–566 (2005). [PubMed]
  19. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004). [CrossRef] [PubMed]
  20. I. Fredriksson, M. Larsson, and T. Strömberg, “Measurement depth and volume in laser Doppler flowmetry,” Microvasc. Res.78(1), 4–13 (2009). [CrossRef] [PubMed]
  21. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006). [CrossRef] [PubMed]
  22. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  23. J. M. Schmitt, “Optical Measurement of blood oxygenation by implantable telemetry,” (1986).
  24. S. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html2013 .
  25. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2(1/2), 26–40 (2000). [CrossRef] [PubMed]
  26. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol.72(3), 383–391 (2000). [PubMed]
  27. J. Kolzer, G. Mitic, J. Otto, and W. Zinth, “Measurements of the Optical Properties of Breast Tissue using time-resolved transillumination,” Proc. SPIE2326, 143–152 (1995). [CrossRef]
  28. ANSI Z136.1 – 2007: American National Standard for Safe Use of Lasers,” (American National Standard Institute, 2007).
  29. “International Standard Safety of Laser Products CEI IEC 60825-1,” (International Electrotechnical Comission, 2007).
  30. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009). [CrossRef] [PubMed]
  31. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol.70(2), 227–231 (2009). [CrossRef] [PubMed]
  32. S. Vaithilingam, T. Ma, Y. Furukawa, A. Zerda, O. Oralkan, A. Kamaya, S. Keren, S. Gambhir, R. B. Jeffrey, and B. T. Khuri-Yakub, “P6A-4 A Co-Axial Scanning Acoustic and Photoacoustic Microscope,” IEEE Ultrasonics Symposium, pp. 2413–2416 (2007).
  33. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express13(1), 89–95 (2005). [CrossRef] [PubMed]
  34. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010). [CrossRef] [PubMed]
  35. F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, “High-resolution photoacoustic imaging with focused laser and ultrasonic beams,” Appl. Phys. Lett.94(3), 033902 (2009). [CrossRef] [PubMed]
  36. A. Oraevsky, E. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic Imaging of Blood for Visualization and Diagnostics of Breast Cancer,” Proc. SPIE4618, 81–94 (2002). [CrossRef]
  37. X. D. Wang, Y. Xu, M. H. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment,” Med. Phys.29(12), 2799–2805 (2002). [CrossRef] [PubMed]
  38. J. Koo, M. Jeon, Y. Oh, H. W. Kang, J. Kim, C. Kim, and J. Oh, “In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes,” Phys. Med. Biol.57(23), 7853–7862 (2012). [CrossRef] [PubMed]
  39. A. Agarwal, S. W. Huang, M. ODonnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007). [CrossRef]
  40. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009). [CrossRef] [PubMed]
  41. G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol.49(7), 1329–1338 (2004). [CrossRef] [PubMed]
  42. G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, and C. Li, “Copper Sulfide Nanoparticles As a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm,” ACS Nano6(8), 7489–7496 (2012). [CrossRef] [PubMed]
  43. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005). [CrossRef]
  44. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express3(1), 16–25 (2012). [CrossRef] [PubMed]
  45. S. A. Ermilov, H.-P. Brecht, M. P. Fronheiser, V. Nadvoretsky, R. Su, A. Conjusteau, and A. A. Oraevsky, “In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array,” Proc. SPIE7564, 756422 (2010). [CrossRef]
  46. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007). [CrossRef] [PubMed]
  47. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008). [CrossRef] [PubMed]
  48. J. Su, A. Karpiouk, B. Wang, and S. Emelianov, “Photoacoustic imaging of clinical metal needles in tissue,” J. Biomed. Opt.15(2), 021309 (2010). [CrossRef] [PubMed]
  49. A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express18(19), 19592–19602 (2010). [CrossRef] [PubMed]
  50. J. A. Viator, B. Choi, M. Ambrose, J. Spanier, and J. S. Nelson, “In vivo port-wine stain depth determination with a photoacoustic probe,” Appl. Opt.42(16), 3215–3224 (2003). [CrossRef] [PubMed]
  51. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express1(1), 278–284 (2010). [CrossRef] [PubMed]
  52. T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. C. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med.24(2), 151–166 (1999). [CrossRef] [PubMed]
  53. T. J. Pfefer, D. J. Smithies, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, and A. J. Welch, “Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains,” Lasers Surg. Med.26(2), 145–157 (2000). [CrossRef] [PubMed]
  54. J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol.54(13), 4225–4241 (2009). [CrossRef] [PubMed]
  55. H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol.1(2), 93–122 (1948). [PubMed]
  56. A. R. Moritz and F. C. Henriques, “Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns,” Am. J. Pathol.23(5), 695–720 (1947). [PubMed]
  57. S. R. Mordon, B. Wassmer, J. P. Reynaud, and J. Zemmouri, “Mathematical modeling of laser lipolysis,” Biomed. Eng. Online7(1), 10 (2008). [CrossRef] [PubMed]
  58. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Network (Academic Press, London, 1990).
  59. F. C. Henriques., “Studies of Thermal Injury; The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury,” Arch. Pathol. (Chic)43(5), 489–502 (1947). [PubMed]
  60. B. Nemati, A. Dunn, A. J. Welch, and H. G. Rylander, “Optical model for light distribution during transscleral cyclophotocoagulation,” Appl. Opt.37(4), 764–771 (1998). [CrossRef] [PubMed]
  61. J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46(6), 1665–1678 (2001). [CrossRef] [PubMed]
  62. D. J. Smithies, M. J. van Gemert, M. K. Hansen, T. E. Milner, and J. S. Nelson, “Three-dimensional reconstruction of port wine stain vascular anatomy from serial histological sections,” Phys. Med. Biol.42(9), 1843–1847 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (525 KB)     
» Media 2: MP4 (280 KB)     
» Media 3: MP4 (407 KB)     
» Media 4: MP4 (229 KB)     
» Media 5: MP4 (1520 KB)     
» Media 6: MP4 (1192 KB)     
» Media 7: MP4 (1628 KB)     
» Media 8: MP4 (1273 KB)     
» Media 9: MP4 (245 KB)     
» Media 10: MP4 (254 KB)     
» Media 11: MP4 (241 KB)     
» Media 12: MP4 (244 KB)     
» Media 13: MP4 (236 KB)     
» Media 14: MP4 (242 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited