OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 848–857

Detection of swelling of single isolated mitochondrion with optical microscopy

Daisuke Morikawa, Keita Kanematsu, Takahiro Shibata, Keisuke Haseda, Norihiro Umeda, and Yoshihiro Ohta  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 848-857 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Volume regulation under osmotic loading is one of the most fundamental functions in cells and organelles. However, the effective method to detect volume changes of a single organelle has not been developed. Here, we present a novel technique for detecting volume changes of a single isolated mitochondrion in aqueous solution based on the transmittance of the light through the mitochondrion. We found that 70% and 21% of mitochondria swelled upon addition of a hypotonic solution and Ca2+, respectively. These results show the potential of the present technique to detect the physiological volume changes of individual small organelles such as mitochondria.

© 2014 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Cell Studies

Original Manuscript: December 9, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: February 14, 2014
Published: February 24, 2014

Daisuke Morikawa, Keita Kanematsu, Takahiro Shibata, Keisuke Haseda, Norihiro Umeda, and Yoshihiro Ohta, "Detection of swelling of single isolated mitochondrion with optical microscopy," Biomed. Opt. Express 5, 848-857 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Boer, A. Anishkin, and S. Sukharev, “Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time,” Biochemistry50(19), 4087–4096 (2011). [CrossRef] [PubMed]
  2. X. Sun, L. Chen, H. Luo, J. Mao, L. Zhu, S. Nie, and L. Wang, “Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells,” J. Membr. Biol.245(2), 107–115 (2012). [CrossRef] [PubMed]
  3. S. V. Koltsova, O. A. Akimova, S. V. Kotelevtsev, R. Grygorczyk, and S. N. Orlov, “Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport,” Can. J. Physiol. Pharmacol.90(2), 209–217 (2012). [CrossRef] [PubMed]
  4. J. M. Wood, E. Bremer, L. N. Csonka, R. Kraemer, B. Poolman, T. van der Heide, and L. T. Smith, “Osmosensing and osmoregulatory compatible solute accumulation by bacteria,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.130(3), 437–460 (2001). [CrossRef] [PubMed]
  5. P. Bernardi, “Mitochondrial transport of cations: channels, exchangers, and permeability transition,” Physiol. Rev.79(4), 1127–1155 (1999). [PubMed]
  6. P. Bernardi, L. Scorrano, R. Colonna, V. Petronilli, and F. Di Lisa, “Mitochondria and cell death. Mechanistic aspects and methodological issues,” Eur. J. Biochem.264(3), 687–701 (1999). [CrossRef] [PubMed]
  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Apoptosis” in Molecular Biology of THE CELL V ed., (Garland Science, New York, 2008).
  8. K. D. Garlid and A. D. Beavis, “Swelling and contraction of the mitochondrial matrix. II. Quantitative application of the light scattering technique to solute transport across the inner membrane,” J. Biol. Chem.260(25), 13434–13441 (1985). [PubMed]
  9. N. Zamzami, C. Maisse, D. Métivier, and G. Kroemer, “Measurement of Membrane Permeability and Permeability Transition of Mitochondria,” in: L.A. Pon, E.A. Schon (Eds.), Methods in Cell Biol. 65, 147–158 (2001)
  10. V. Ball and J. J. Ramsden, “Buffer Dependence of Refractive Index Increments of Protein Solutions,” Biopolymers46(7), 489–492 (1998). [CrossRef]
  11. M. M. Chakrabarty, Chemistry and Technology of Oils and Fats (Allied Publishers, 2009), Chap.11.
  12. S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun.290(1), 23–28 (2002). [CrossRef] [PubMed]
  13. R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest.50(2), 143–152 (1990). [CrossRef] [PubMed]
  14. T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J.88(3), 2340–2349 (2005). [CrossRef] [PubMed]
  15. Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun.344(4), 1094–1101 (2006). [CrossRef] [PubMed]
  16. K. M. Broekemeier, M. E. Dempsey, and D. R. Pfeiffer, “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem.264(14), 7826–7830 (1989). [PubMed]
  17. D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys.195(2), 453–459 (1979). [CrossRef] [PubMed]
  18. G. J. Lee, S. J. Chae, J. H. Jeong, S. R. Lee, S. J. Ha, Y. K. Pak, W. Kim, and H. K. Park, “Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy,” Micron42(3), 299–304 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited