OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 858–875

Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy

Denis Rouède, Pascal Coumailleau, Emmanuel Schaub, Jean-Jacques Bellanger, Mireille Blanchard-Desce, and François Tiaho  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 858-875 (2014)
http://dx.doi.org/10.1364/BOE.5.000858


View Full Text Article

Enhanced HTML    Acrobat PDF (10241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4160) Nonlinear optics : Multiharmonic generation
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 4, 2013
Revised Manuscript: January 15, 2014
Manuscript Accepted: January 19, 2014
Published: February 25, 2014

Citation
Denis Rouède, Pascal Coumailleau, Emmanuel Schaub, Jean-Jacques Bellanger, Mireille Blanchard-Desce, and François Tiaho, "Myofibrillar misalignment correlated to triad disappearance of mdx mouse gastrocnemius muscle probed by SHG microscopy," Biomed. Opt. Express 5, 858-875 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. P. Campbell and S. D. Kahl, “Association of dystrophin and an integral membrane glycoprotein,” Nature338(6212), 259–262 (1989). [CrossRef] [PubMed]
  2. E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988). [CrossRef] [PubMed]
  3. D. J. Blake, A. Weir, S. E. Newey, and K. E. Davies, “Function and genetics of dystrophin and dystrophin-related proteins in muscle,” Physiol. Rev.82(2), 291–329 (2002). [PubMed]
  4. J. G. Tidball and M. Wehling-Henricks, “The role of free radicals in the pathophysiology of muscular dystrophy,” J. Appl. Physiol.102(4), 1677–1686 (2006). [CrossRef] [PubMed]
  5. G. Bulfield, W. G. Siller, P. A. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proc. Natl. Acad. Sci. U.S.A.81(4), 1189–1192 (1984). [CrossRef] [PubMed]
  6. S. De la Porte, S. Morin, and J. Koenig, “Characteristics of skeletal muscle in mdx mutant mice,” Int. Rev. Cytol.191, 99–148 (1999).
  7. T. A. Partridge, “The mdx mouse model as a surrogate for Duchenne muscular dystrophy,” FEBS J.280(17), 4177–4186 (2013). [CrossRef] [PubMed]
  8. B. Blaauw, L. Agatea, L. Toniolo, M. Canato, M. Quarta, K. A. Dyar, D. Danieli-Betto, R. Betto, S. Schiaffino, and C. Reggiani, “Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy,” J. Appl. Physiol.108(1), 105–111 (2010). [CrossRef] [PubMed]
  9. A. Franco and J. B. Lansman, “Calcium entry through stretch-inactivated ion channels in mdx myotubes,” Nature344(6267), 670–673 (1990). [CrossRef] [PubMed]
  10. M. D. Teichmann, F. V. Wegner, R. H. Fink, J. S. Chamberlain, B. S. Launikonis, B. Martinac, and O. Friedrich, “Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression,” PLoS ONE3(11), e3644 (2008). [CrossRef] [PubMed]
  11. P. R. Turner, T. Westwood, C. M. Regen, and R. A. Steinhardt, “Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice,” Nature335(6192), 735–738 (1988). [CrossRef] [PubMed]
  12. M. J. Cullen, J. J. Fulthorpe, and J. B. Harris, “The distribution of desmin and titin in normal and dystrophic human muscle,” Acta Neuropathol.83(2), 158–169 (1992). [CrossRef] [PubMed]
  13. H. J. Binder, D. C. Herting, V. Hurst, S. C. Finch, and H. M. Spiro, “Tocopherol deficiency in man,” N. Engl. J. Med.273(24), 1289–1297 (1965). [CrossRef] [PubMed]
  14. N. P. Whitehead, C. Pham, O. L. Gervasio, and D. G. Allen, “N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice,” J. Physiol.586(7), 2003–2014 (2008). [CrossRef] [PubMed]
  15. C. E. Woods, D. Novo, M. DiFranco, J. Capote, and J. L. Vergara, “Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres,” J. Physiol.568(3), 867–880 (2005). [CrossRef] [PubMed]
  16. M. DiFranco, C. E. Woods, J. Capote, and J. L. Vergara, “Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains,” Proc. Natl. Acad. Sci. U.S.A.105(38), 14698–14703 (2008). [CrossRef] [PubMed]
  17. R. M. Lovering, L. Michaelson, and C. W. Ward, “Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling,” Am. J. Physiol. Cell Physiol.297(3), C571–C580 (2009). [CrossRef] [PubMed]
  18. J. Capote, M. DiFranco, and J. L. Vergara, “Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study,” Am. J. Physiol. Cell Physiol.298(5), C1077–C1086 (2010). [CrossRef] [PubMed]
  19. E. Clarkson, C. F. Costa, and L. M. Machesky, “Congenital myopathies: diseases of the actin cytoskeleton,” J. Pathol.204(4), 407–417 (2004). [CrossRef] [PubMed]
  20. O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain, and C. Garbe, “Microarchitecture Is Severely Compromised but Motor Protein Function Is Preserved in Dystrophic mdx Skeletal Muscle,” Biophys. J.98(4), 606–616 (2010). [CrossRef] [PubMed]
  21. N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” Bioessays27(8), 809–822 (2005). [CrossRef] [PubMed]
  22. S. Lange, F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edström, E. Ehler, B. Udd, and M. Gautel, “The kinase domain of titin controls muscle gene expression and protein turnover,” Science308(5728), 1599–1603 (2005). [CrossRef] [PubMed]
  23. L. Edström, L. E. Thornell, J. Albo, S. Landin, and M. Samuelsson, “Myopathy with respiratory failure and typical myofibrillar lesions,” J. Neurol. Sci.96(2-3), 211–228 (1990). [CrossRef] [PubMed]
  24. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  25. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  26. X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012). [CrossRef] [PubMed]
  27. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  28. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002). [CrossRef] [PubMed]
  29. F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil.27(5-7), 469–479 (2006). [CrossRef] [PubMed]
  30. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt.13(4), 044018 (2008). [CrossRef] [PubMed]
  31. F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007). [CrossRef] [PubMed]
  32. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol.162(3), 500–508 (2008). [CrossRef] [PubMed]
  33. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express16(20), 16151–16165 (2008). [CrossRef] [PubMed]
  34. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt.9(5), 882–892 (2004). [CrossRef] [PubMed]
  35. C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt.46(10), 1852–1859 (2007). [CrossRef] [PubMed]
  36. G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy,” Opt. Express17(22), 19763–19777 (2009). [CrossRef] [PubMed]
  37. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7763–7768 (2010). [CrossRef] [PubMed]
  38. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express17(16), 14418–14425 (2009). [CrossRef] [PubMed]
  39. M. E. Llewellyn, R. P. J. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature454(7205), 784–788 (2008). [PubMed]
  40. G. Recher, D. Rouède, E. Schaub, and F. Tiaho, “Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser,” Biomed. Opt. Express2(2), 374–384 (2011). [CrossRef] [PubMed]
  41. S. I. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS ONE8(3), e58600 (2013). [CrossRef] [PubMed]
  42. D. Rouède, J.-J. Bellanger, G. Recher, and F. Tiaho, “Study of the effect of myofibrillar misalignment on the sarcomeric SHG intensity pattern,” Opt. Express21(9), 11404–11414 (2013). [CrossRef] [PubMed]
  43. G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc.241(2), 207–211 (2011). [CrossRef] [PubMed]
  44. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, “Coherent scattering in multi-harmonic light microscopy,” Biophys. J.80(3), 1568–1574 (2001). [CrossRef] [PubMed]
  45. D. Rouède, J.-J. Bellanger, E. Schaub, G. Recher, and F. Tiaho, “Theoretical and Experimental SHG Angular Intensity Patterns from Healthy and Proteolysed Muscles,” Biophys. J.104(9), 1959–1968 (2013). [CrossRef] [PubMed]
  46. D. Rouède, G. Recher, J. J. Bellanger, M. T. Lavault, E. Schaub, and F. Tiaho, “Modeling of Supramolecular Centrosymmetry Effect on Sarcomeric SHG Intensity Pattern of Skeletal Muscles,” Biophys. J.101(2), 494–503 (2011). [CrossRef] [PubMed]
  47. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011). [CrossRef] [PubMed]
  48. V. Dubowitz and C. A. Sewry, Muscle Biopsy: A Practical Approach, Third Edition (London, 2007).
  49. B. M. Millman, “The filament lattice of striated muscle,” Physiol. Rev.78(2), 359–391 (1998). [PubMed]
  50. D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motil. Cytoskeleton28(1), 1–24 (1994). [CrossRef] [PubMed]
  51. J. W. Sanger, J. S. Wang, B. Holloway, A. P. Du, and J. M. Sanger, “Myofibrillogenesis in Skeletal Muscle Cells in Zebrafish,” Cell Motil. Cytoskeleton66(8), 556–566 (2009). [CrossRef] [PubMed]
  52. J. K. Y. U. Hiroko Yokota, “Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis,” Phys. Res. Int.2012, 12 (2012).
  53. M. Rivard, C.-A. Couture, A. K. Miri, M. Laliberté, A. Bertrand-Grenier, L. Mongeau, and F. Légaré, “Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy,” Biomed. Opt. Express4(10), 2078–2086 (2013). [CrossRef] [PubMed]
  54. X. Wang, N. Weisleder, C. Collet, J. Zhou, Y. Chu, Y. Hirata, X. Zhao, Z. Pan, M. Brotto, H. Cheng, and J. Ma, “Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle,” Nat. Cell Biol.7(5), 525–530 (2005). [CrossRef] [PubMed]
  55. D. G. Allen, N. P. Whitehead, and E. W. Yeung, “Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes,” J. Physiol.567(3), 723–735 (2005). [CrossRef] [PubMed]
  56. L. S. Song, E. A. Sobie, S. McCulle, W. J. Lederer, C. W. Balke, and H. Cheng, “Orphaned ryanodine receptors in the failing heart,” Proc. Natl. Acad. Sci. U.S.A.103(11), 4305–4310 (2006). [CrossRef] [PubMed]
  57. F. R. Heinzel, V. Bito, L. Biesmans, M. Wu, E. Detre, F. von Wegner, P. Claus, S. Dymarkowski, F. Maes, J. Bogaert, F. Rademakers, J. D’hooge, and K. Sipido, “Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium,” Circ. Res.102(3), 338–346 (2008). [CrossRef] [PubMed]
  58. K. M. Dibb, J. D. Clarke, M. A. Horn, M. A. Richards, H. K. Graham, D. A. Eisner, and A. W. Trafford, “Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure,” Circ Heart Fail2(5), 482–489 (2009). [CrossRef] [PubMed]
  59. A. R. Lyon, K. T. MacLeod, Y. Zhang, E. Garcia, G. K. Kanda, M. J. Lab, Y. E. Korchev, S. E. Harding, and J. Gorelik, “Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart,” Proc. Natl. Acad. Sci. U.S.A.106(16), 6854–6859 (2009). [CrossRef] [PubMed]
  60. S. Wei, A. Guo, B. Chen, W. Kutschke, Y. P. Xie, K. Zimmerman, R. M. Weiss, M. E. Anderson, H. Cheng, and L. S. Song, “T-tubule remodeling during transition from hypertrophy to heart failure,” Circ. Res.107(4), 520–531 (2010). [CrossRef] [PubMed]
  61. Z. Li, E. Colucci-Guyon, M. Pinçon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet, “Cardiovascular lesions and skeletal myopathy in mice lacking desmin,” Dev. Biol.175(2), 362–366 (1996). [CrossRef] [PubMed]
  62. Z. Li, M. Mericskay, O. Agbulut, G. Butler-Browne, L. Carlsson, L. E. Thornell, C. Babinet, and D. Paulin, “Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle,” J. Cell Biol.139(1), 129–144 (1997). [CrossRef] [PubMed]
  63. R. M. Lovering, A. O’Neill, J. M. Muriel, B. L. Prosser, J. Strong, and R. J. Bloch, “Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments,” Am. J. Physiol. Cell Physiol.300(4), C803–C813 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited