OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 895–906

Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples

Marjan Razani, Timothy W.H. Luk, Adrian Mariampillai, Peter Siegler, Tim-Rasmus Kiehl, Michael C. Kolios, and Victor X.D. Yang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 895-906 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus.

© 2014 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

Original Manuscript: November 4, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: February 19, 2014
Published: February 26, 2014

Marjan Razani, Timothy W.H. Luk, Adrian Mariampillai, Peter Siegler, Tim-Rasmus Kiehl, Michael C. Kolios, and Victor X.D. Yang, "Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples," Biomed. Opt. Express 5, 895-906 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999). [CrossRef] [PubMed]
  2. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011). [CrossRef] [PubMed]
  3. F. Sebag, J. Vaillant-Lombard, J. Berbis, V. Griset, J. F. Henry, P. Petit, and C. Oliver, “Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules,” J. Clin. Endocrinol. Metab.95(12), 5281–5288 (2010). [CrossRef] [PubMed]
  4. R. Z. Slapa, A. Piwowonski, W. S. Jakubowski, J. Bierca, K. T. Szopinski, J. Slowinska-Srzednicka, B. Migda, and R. K. Mlosek, “Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation,” J. Thyroid Res.2012, 657147 (2012). [CrossRef] [PubMed]
  5. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics2(1), 39–43 (2008). [CrossRef] [PubMed]
  6. S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Invest. Ophthalmol. Vis. Sci.48(7), 3026–3031 (2007). [CrossRef] [PubMed]
  7. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013). [CrossRef] [PubMed]
  8. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  9. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009). [CrossRef] [PubMed]
  10. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003). [CrossRef] [PubMed]
  11. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med.1(9), 970–972 (1995). [CrossRef] [PubMed]
  12. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013). [CrossRef] [PubMed]
  13. S. Wang, S. Aglyamov, A. Karpiouk, J. Li, S. Emelianov, F. Manns, and K. V. Larin, “Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens,” Biomed. Opt. Express4(12), 2769–2780 (2013). [CrossRef] [PubMed]
  14. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998). [CrossRef] [PubMed]
  15. M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. E. Plante, “Clinical applications of arterial stiffness; definitions and reference values,” Am. J. Hypertens.15(5), 426–444 (2002). [CrossRef] [PubMed]
  16. K. S. Cheng, C. R. Baker, G. Hamilton, A. P. G. Hoeks, and A. M. Seifalian, “Arterial elastic properties and cardiovascular risk/event,” Eur. J. Vasc. Endovasc. Surg.24(5), 383–397 (2002). [CrossRef] [PubMed]
  17. S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, “Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients,” Hypertension37(5), 1236–1241 (2001). [CrossRef] [PubMed]
  18. M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,” Ultrasound Med. Biol.36(10), 1662–1676 (2010). [CrossRef] [PubMed]
  19. G. Pasterkamp and E. Falk, “Atherosclerotic plaque rupture: an overview,” J. Clin. Basic Cardiol.3, 81–86 (2000).
  20. E. Falk, “Why do plaques rupture?” Circulation86(6Suppl), III30–III42 (1992). [PubMed]
  21. K. C. Hilty and D. H. Steinberg, “Vulnerable plaque imaging-current techniques,” J. Cardiovasc. Transl. Res.2(1), 9–18 (2009). [CrossRef] [PubMed]
  22. F. Sharif and R. T. Murphy, “Current status of vulnerable plaque detection,” Catheter. Cardiovasc. Interv.75(1), 135–144 (2010). [CrossRef] [PubMed]
  23. C. Schmitt, G. Soulez, R. L. Maurice, M. F. Giroux, and G. Cloutier, “Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.33(12), 1841–1858 (2007). [CrossRef] [PubMed]
  24. J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol.35(5), 707–716 (2009). [CrossRef] [PubMed]
  25. M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999). [CrossRef] [PubMed]
  26. M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006). [CrossRef] [PubMed]
  27. L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007). [CrossRef] [PubMed]
  28. M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006). [CrossRef] [PubMed]
  29. W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000). [CrossRef] [PubMed]
  30. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002). [CrossRef] [PubMed]
  31. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004). [CrossRef] [PubMed]
  32. K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002). [CrossRef] [PubMed]
  33. M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998). [CrossRef] [PubMed]
  34. J. D. Allen, K. L. Ham, D. M. Dumont, B. Sileshi, G. E. Trahey, and J. J. Dahl, “The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization,” Vasc. Med.16(4), 302–311 (2011). [CrossRef] [PubMed]
  35. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012). [CrossRef] [PubMed]
  36. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007). [CrossRef] [PubMed]
  37. M. W. Urban and J. F. Greenleaf, “A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue,” Phys. Med. Biol.54(19), 5919–5933 (2009). [CrossRef] [PubMed]
  38. C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011). [CrossRef] [PubMed]
  39. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003). [CrossRef] [PubMed]
  40. S. Le Floc’h, G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon, “On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study,” Phys. Med. Biol.55(19), 5701–5721 (2010). [CrossRef] [PubMed]
  41. H. Kanai, H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa, “Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study,” Circulation107(24), 3018–3021 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (860 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited