OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 932–943

Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 3, pp. 932-943 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a high power supercontinuum source at a center wavelength of 1.7 μm to demonstrate highly penetrative ultrahigh-resolution optical coherence tomography (UHR-OCT). A single-wall carbon nanotube dispersed in polyimide film was used as a transparent saturable absorber in the cavity configuration and a high-repetition-rate ultrashort-pulse fiber laser was realized. The developed SC source had an output power of 60 mW, a bandwidth of 242 nm full-width at half maximum, and a repetition rate of 110 MHz. The average power and repetition rate were approximately twice as large as those of our previous SC source [20]. Using the developed SC source, UHR-OCT imaging was demonstrated. A sensitivity of 105 dB and an axial resolution of 3.2 μm in biological tissue were achieved. We compared the UHR-OCT images of some biological tissue samples measured with the developed SC source, the previous one, and one operating in the 1.3 μm wavelength region. We confirmed that the developed SC source had improved sensitivity and penetration depth for low-water-absorption samples.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Optical Coherence Tomography

Original Manuscript: December 24, 2013
Revised Manuscript: February 15, 2014
Manuscript Accepted: February 18, 2014
Published: February 26, 2014

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, "Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography," Biomed. Opt. Express 5, 932-943 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999). [CrossRef]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  4. R. A. Costa, M. Skaf, L. A. S. Melo, D. Calucci, J. A. Cardillo, J. C. Castro, D. Huang, and M. Wojtkowski, “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res.25(3), 325–353 (2006). [CrossRef] [PubMed]
  5. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  6. M. Nishiura, T. Kobayashi, M. Adachi, J. Nakanishi, T. Ueno, Y. Ito, and N. Nishizawa, “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys.49(1), 012701 (2010). [CrossRef]
  7. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt.37(16), 3582–3585 (1998). [CrossRef] [PubMed]
  8. L. L. Otis, B. W. Colston, M. J. Everett, and H. Nathel, “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol.29(2), 85–89 (2000). [CrossRef] [PubMed]
  9. A. Z. Freitas, D. M. Zezell, N. D. Vieira, A. C. Ribeiro, and A. S. L. Gomes, “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys.99(2), 024906 (2006). [CrossRef]
  10. G. Isenberg and M. V. Sivak., “Gastrointestinal optical coherence tomography,” Tech. Gastrointest. Endosc.5(2), 94–101 (2003). [CrossRef]
  11. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol.123(3), 458–463 (2004). [CrossRef] [PubMed]
  12. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995). [CrossRef] [PubMed]
  13. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol.39(10), 1705–1720 (1994). [CrossRef] [PubMed]
  14. Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998). [CrossRef] [PubMed]
  15. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001). [CrossRef] [PubMed]
  16. A. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006). [CrossRef] [PubMed]
  17. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998). [CrossRef] [PubMed]
  18. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004). [CrossRef] [PubMed]
  19. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008). [CrossRef] [PubMed]
  20. S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples,” Appl. Phys. Express4(5), 052501 (2011). [CrossRef]
  21. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012). [CrossRef] [PubMed]
  22. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010). [CrossRef] [PubMed]
  23. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008). [CrossRef] [PubMed]
  24. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express17(22), 20233–20241 (2009). [CrossRef] [PubMed]
  25. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11(10), 659–661 (1986). [CrossRef] [PubMed]
  26. N. Nishizawa and T. Goto, “Compact System of Wavelength-Tunable Femtosecond Soliton Pulse Generation Using Optical Fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999). [CrossRef]
  27. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all fiber system,” J. Opt. Soc. Am. B24(8), 1786 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3706 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited