OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 3 — Mar. 1, 2014
  • pp: 944–960

Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging

Lingling Zhao, Ken Abe, Shilpi Rajoria, Qi Pian, Margarida Barroso, and Xavier Intes  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 3, pp. 944-960 (2014)
http://dx.doi.org/10.1364/BOE.5.000944


View Full Text Article

Enhanced HTML    Acrobat PDF (2958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence lifetime imaging is playing an increasing role in drug development by providing a sensitive method to monitor drug delivery and receptor-ligand interactions. However, the wide dynamic range of fluorescence intensity emitted by ex vivo and in vivo samples presents challenges in retrieving information over the whole subject accurately and quantitatively. To overcome this challenge, we developed an active wide-field illumination (AWFI) strategy based on a spatial light modulator that acquires optimal fluorescence signals by enhancing the dynamic range, signal to noise ratio, and estimation of lifetime-based parameters. We demonstrate the ability of AWFI to estimate Förster resonance energy transfer (FRET) donor fraction from dissected organs with high accuracy (standard deviation <6%) over the whole field of view, in contrast with the homogenous wide-field illumination. We further report its successful application to quantitative FRET imaging in a live mouse. AWFI allows improved detection of weak signals and enhanced quantitative accuracy in ex vivo and in vivo molecular fluorescence quantitative imaging. The technique allows for robust quantitative estimation of the bio-distribution of molecular probes and lifetime-based parameters over an extended imaging field exhibiting a large range of fluorescence intensities and at a high acquisition speed (less than 1 min).

© 2014 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(230.6120) Optical devices : Spatial light modulators
(260.2160) Physical optics : Energy transfer
(260.2510) Physical optics : Fluorescence
(170.2945) Medical optics and biotechnology : Illumination design

ToC Category:
Molecular Imaging and Probe Development

History
Original Manuscript: November 14, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: January 31, 2014
Published: February 27, 2014

Citation
Lingling Zhao, Ken Abe, Shilpi Rajoria, Qi Pian, Margarida Barroso, and Xavier Intes, "Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging," Biomed. Opt. Express 5, 944-960 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-3-944


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Fischman, N. M. Alpert, and R. H. Rubin, “Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action,” Clin. Pharmacokinet.41(8), 581–602 (2002). [CrossRef] [PubMed]
  2. D. J. Bornhop, C. H. Contag, K. Licha, and C. J. Murphy, “Advance in contrast agents, reporters, and detection,” J. Biomed. Opt.6(2), 106–110 (2001). [CrossRef] [PubMed]
  3. T. F. Massoud, A. Singh, and S. S. Gambhir, “Noninvasive molecular neuroimaging using reporter genes: part II, experimental, current, and future applications,” AJNR Am. J. Neuroradiol.29(3), 409–418 (2008). [CrossRef] [PubMed]
  4. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett.7(6), 1711–1716 (2007). [CrossRef] [PubMed]
  5. N. Kosaka, M. Ogawa, N. Sato, P. L. Choyke, and H. Kobayashi, “In vivo real-time, multicolor, quantum dot lymphatic imaging,” J. Invest. Dermatol.129(12), 2818–2822 (2009). [CrossRef] [PubMed]
  6. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  7. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005). [CrossRef] [PubMed]
  8. S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. Neil, C. Dunsby, and P. M. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011). [CrossRef] [PubMed]
  9. V. Venugopal, J. Chen, M. Barroso, and X. Intes, “Quantitative tomographic imaging of intermolecular FRET in small animals,” Biomed. Opt. Express3(12), 3161–3175 (2012). [CrossRef] [PubMed]
  10. S. A. Hilderbrand and R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol.14(1), 71–79 (2010). [CrossRef] [PubMed]
  11. L. Zhao, K. Abe, M. Barroso, and X. Intes, “Active wide-field illumination for high-throughput fluorescence lifetime imaging,” Opt. Lett.38(19), 3976–3979 (2013). [CrossRef] [PubMed]
  12. V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010). [CrossRef] [PubMed]
  13. D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis, “Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.104(39), 15549–15554 (2007). [CrossRef] [PubMed]
  14. V. Venugopal and X. Intes, “Adaptive wide-field optical tomography,” J. Biomed. Opt.18(3), 036006 (2013). [CrossRef] [PubMed]
  15. V. Venugopal, “A small animal time-resolved optical tomography platform using wide-field excitation,” Doctoral Dissertation Rensselaer Polytechnic Institute, 47–49 (2011).
  16. K. Abe, L. Zhao, A. Periasamy, X. Intes, and M. Barroso, “Non-Invasive In Vivo Imaging of Near Infrared-labeled Transferrin in Breast Cancer Cells and Tumors Using Fluorescence Lifetime FRET,” PLoS ONE8(11), e80269 (2013). [CrossRef] [PubMed]
  17. M. Kollner and J. Wolfrum, “How Many Photons Are Necessary for Fluorescence-Lifetime Measurements,” Chem. Phys. Lett.200(1-2), 199–204 (1992). [CrossRef]
  18. H. Wallrabe, M. Elangovan, A. Burchard, A. Periasamy, and M. Barroso, “Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes,” Biophys. J.85(1), 559–571 (2003). [CrossRef] [PubMed]
  19. H. Wallrabe, M. Stanley, A. Periasamy, and M. Barroso, “One- and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes,” J. Biomed. Opt.8(3), 339–346 (2003). [CrossRef] [PubMed]
  20. Transferrin-Vivo 750 Fluorescent Imaging Agent. Available at http://www.perkinelmer.com/Catalog/Product/ID/10091) ,” (2013).
  21. C. Alric, I. Miladi, D. Kryza, J. Taleb, F. Lux, R. Bazzi, C. Billotey, M. Janier, P. Perriat, S. Roux, and O. Tillement, “The biodistribution of gold nanoparticles designed for renal clearance,” Nanoscale5(13), 5930–5939 (2013). [CrossRef] [PubMed]
  22. C. R. Berry, P. Fisher, P. D. Koblik, W. G. Guilford, and W. H. Hornof, “Scintigraphic biodistribution and plasma kinetics of indium 111-labeled transferrin in dogs,” Am. J. Vet. Res.58(11), 1188–1192 (1997). [PubMed]
  23. A. L. Vavere and M. J. Welch, “Preparation, biodistribution, and small animal PET of 45Ti-transferrin,” J. Nucl. Med.46(4), 683–690 (2005). [PubMed]
  24. J. Meek and E. D. Adamson, “Transferrin in foetal and adult mouse tissues: synthesis, storage and secretion,” J. Embryol. Exp. Morphol.86, 205–218 (1985). [PubMed]
  25. M. K. Kuimova, G. Yahioglu, J. A. Levitt, and K. Suhling, “Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging,” J. Am. Chem. Soc.130(21), 6672–6673 (2008). [CrossRef] [PubMed]
  26. M. Hassan, J. Riley, V. Chernomordik, P. Smith, R. Pursley, S. B. Lee, J. Capala, and A. H. Gandjbakhche, “Fluorescence lifetime imaging system for in vivo studies,” Mol. Imaging6(4), 229–236 (2007). [PubMed]
  27. M. Pimpalkhare, J. Chen, V. Venugopal, and X. Intes, “Ex vivo fluorescence molecular tomography of the spine,” Int. J. Biomed. Imaging2012, 942326 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (217 KB)     
» Media 2: AVI (217 KB)     
» Media 3: AVI (5128 KB)     
» Media 4: AVI (4860 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited