OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1026–1037

Accurate position tracking of optically trapped live cells

Niall McAlinden, David G. Glass, Owain R. Millington, and Amanda J. Wright  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1026-1037 (2014)
http://dx.doi.org/10.1364/BOE.5.001026


View Full Text Article

Enhanced HTML    Acrobat PDF (2613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. There is a growing need to directly trap the cells of interest rather than introduce beads to the sample that can affect the fundamental biological functions of the sample and impact on the very properties the user wishes to observe and measure. However, instabilities while tracking large inhomogeneous objects, such as cells, can make tracking position, calibrating trap strength and making reliable measurements challenging. These instabilities often manifest themselves as cell roll or re-orientation and can occur as a result of viscous drag forces and thermal convection, as well as spontaneously due to Brownian forces. In this paper we discuss and mathematically model the cause of this roll and present several experimental approaches for tackling these issues, including using a novel beam profile consisting of three closely spaced traps and tracking a trapped object by analysing fluorescence images. The approaches presented here trap T cells which form part of the adaptive immune response system, but in principle can be applied to a wide range of samples where the size and inhomogeneous nature of the trapped object can hinder particle tracking experiments.

© 2014 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(170.0180) Medical optics and biotechnology : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: November 20, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 20, 2013
Published: March 3, 2014

Citation
Niall McAlinden, David G. Glass, Owain R. Millington, and Amanda J. Wright, "Accurate position tracking of optically trapped live cells," Biomed. Opt. Express 5, 1026-1037 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys.43(4), 241–258 (2002). [CrossRef]
  2. J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions,” PLoS ONE5(2), 15215 (2010). [CrossRef]
  3. Y. Su and L. Hsu, “Measurement of Macrophage Adhesion at Various pH Values by Optical Tweezers with Backward-Scattered Detection,” Jpn. J. Appl. Phys.49, 077002 (2010). [CrossRef]
  4. X. Wei, M. Si, D. K. Imagawa, P. Ji, B. J. Tromberg, and M. D. Cahalan, “Perillyl Alcohol Inhibits TCR-Mediated [Ca2+]i Signaling, Alters Cell Shape and Motility, and Induces Apoptosis in T Lymphocytes,” Cell. Immunol.201, 6–13 (2000). [CrossRef] [PubMed]
  5. B. Anvari, J. H. Torres, and B. W. McIntyre, “Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers,” J. Biomed. Opt.9(5), 865–872 (2004). [CrossRef] [PubMed]
  6. P. A. Negulescu, T. B. Krasieva, A. Khan, H. H. Kerschbaum, and M. D. Cahalan, “Polarity of T Cell Shape, Motility, and Sensitivity to Antigen,” Immunity4, 421–430 (1996). [CrossRef] [PubMed]
  7. X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca2+ signaling,” Proc. Natl. Acad. Sci. USA96, 8471–8476, (1999). [CrossRef]
  8. K. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–27809 (2004). [CrossRef]
  9. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt.9, S264–S266 (2007). [CrossRef]
  10. M. Andersson, A. Madgavkar, M. Stjerndahl, Y. Wu, W. Tan, and R. Duran, “Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration,” Rev. Sci. Instrum.78, 074302 (2007). [CrossRef] [PubMed]
  11. S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-Speed High-Resolution Imaging of Intercellular Immune Synapses Using Optical Tweezers,” Biophys. J: Biophys. Lett.96(10), L66–L68 (2008). [CrossRef]
  12. N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Designing an experiment to measure cellular interaction forces,” Proceedings of SPIE, 8810, 88101L (2013). [CrossRef]
  13. R. W. Bowman, G. Gibson, D. Carberry, L. Picco, M. Miles, and M. J. Padgett, “iTweezers: Optical micromanipulation controlled by an Apple iPad,” J. Opt.13, 044002 (2011). [CrossRef]
  14. M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip11, 1196–11205 (2011). [CrossRef] [PubMed]
  15. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles,” Biophys. J.81(4), 2378–2388 (2001). [CrossRef] [PubMed]
  16. D. D. Udrea, P. J. Bryanston-Cross, W. K. Lee, and M. Funes-Gallanzi, “Two sub-pixel processing algorithms for high accuracy particle centre estimation in low seeding density particle image velocimetry,” Opt. Laser Technol.28(5), 389–396 (1996). [CrossRef]
  17. M. V. Kristensen, P. Ahrendt, T. B. Lindballe, O. Højager Attermann Nielsen, A. P. Kylling, H. Karstoft, A. Imparato, L. Hosta-Rigau, B. Stadler, H. Stapelfeldt, and S. R. Keiding, “Motion analysis of optically trapped particles and cells using 2D Fourier analysis,” Opt. Express20(3), 1953–1962 (2012). [CrossRef] [PubMed]
  18. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J.81(2), 767–784 (2001). [CrossRef] [PubMed]
  19. X. Wang, S. Chen, M. Kong, Z Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip11(21), 3656–3662 (2011). [CrossRef] [PubMed]
  20. N. McAlinden, D. G. Glass, O. Millington, and A. J. Wright, “Viability studies of optically trapped T-cells,” Proceedings of SPIE, 8097, 80970J (2011). [CrossRef]
  21. D. B. Phillips, S. H. Simpson, J. A. Grieve, G. M. Gibson, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Position clamping of optically trapped microscopic non-spherical probes,” Opt. Express19(21), 20622–20627 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited