OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1050–1061

Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography

Günay Yurtsever, Boris Považay, Aneesh Alex, Behrooz Zabihian, Wolfgang Drexler, and Roel Baets  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1050-1061 (2014)
http://dx.doi.org/10.1364/BOE.5.001050


View Full Text Article

Enhanced HTML    Acrobat PDF (2923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm2. It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(130.0130) Integrated optics : Integrated optics
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: January 6, 2014
Revised Manuscript: February 25, 2014
Manuscript Accepted: February 25, 2014
Published: March 3, 2014

Citation
Günay Yurtsever, Boris Považay, Aneesh Alex, Behrooz Zabihian, Wolfgang Drexler, and Roel Baets, "Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography," Biomed. Opt. Express 5, 1050-1061 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  3. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B88(3), 337–357 (2007). [CrossRef]
  4. G. Grasso, P. Galli, M. Romagnoli, E. Iannone, and A. Bogoni, “Role of Integrated Photonics Technologies in the Realization of Terabit Nodes [Invited],” Opt. Commun. Netw.1(3), B111–B119 (2009). [CrossRef]
  5. I. P. Kaminow, “Optical Integrated Circuits: A Personal Perspective,” J. Lightwave Technol.26(9), 994–1004 (2008). [CrossRef]
  6. L. Grenouillet, T. Dupont, P. Philippe, J. Harduin, N. Olivier, D. Bordel, E. Augendre, K. Gilbert, P. Grosse, A. Chelnokov, and J. M. Fedeli, “Hybrid integration for silicon photonics applications,” Opt. Quantum Electron.44(12-13), 527–534 (2012). [CrossRef]
  7. C. R. Doerr and K. Okamoto, “Advances in Silica Planar Lightwave Circuits,” J. Lightwave Technol.24(12), 4763–4789 (2006). [CrossRef]
  8. G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express16(20), 16093–16103 (2008). [CrossRef] [PubMed]
  9. V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett.48(21), 1331–1333 (2012). [CrossRef] [PubMed]
  10. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011). [CrossRef]
  11. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Ntzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron.48(2), 87–98 (2012). [CrossRef]
  12. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A gratingcoupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011). [CrossRef]
  13. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011). [CrossRef] [PubMed]
  14. D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.6(5), 730–734 (2000). [CrossRef]
  15. G. Yurtsever, K. Komorowska, and R. Baets, “Low Dispersion Integrated Michelson Interferometer on Silicon on Insulator for Optical Coherence Tomography,” Proc. SPIE8091, 80910 (2011). [CrossRef]
  16. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett.37(23), 4820–4822 (2012). [CrossRef] [PubMed]
  17. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express21(14), 16648–16656 (2013). [CrossRef] [PubMed]
  18. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Lightwave Technol.25(9), 2579–2589 (2007). [CrossRef]
  19. W. Bogaerts and S. K. Selvaraja, “Compact Single-Mode Silicon Hybrid Rib/Strip Waveguide With Adiabatic Bends,” IEEE Photon. J.3(3), 422–432 (2011).
  20. M. Izutsu, Y. Nakai, and T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett.7(3), 136–138 (1982). [CrossRef] [PubMed]
  21. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).. [CrossRef] [PubMed]
  22. T. Mizuno, Y. Hashizume, M. Yanagisawa, T. Kitoh, A. Kaneko, and H. Takahashi, “Wideband planar lightwave circuit type variable optical attenuator using phase-generating coupler,” Electron. Lett.11(42), 636638 (2006).
  23. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009). [CrossRef]
  24. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 13081320 (1997). [CrossRef]
  25. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999). [CrossRef] [PubMed]
  26. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited