OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1136–1144

Non-invasive respiratory monitoring using long-period fiber grating sensors

M. D. Petrović, J. Petrovic, A. Daničić, M. Vukčević, B. Bojović, Lj. Hadžievski, T. Allsop, G. Lloyd, and D. J. Webb  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 4, pp. 1136-1144 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: November 25, 2013
Revised Manuscript: January 18, 2014
Manuscript Accepted: February 19, 2014
Published: March 12, 2014

M. D. Petrović, J. Petrovic, A. Daničić, M. Vukčević, B. Bojović, Lj. Hadžievski, T. Allsop, G. Lloyd, and D. J. Webb, "Non-invasive respiratory monitoring using long-period fiber grating sensors," Biomed. Opt. Express 5, 1136-1144 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Mehta and N. S. Hill, “Noninvasive Ventilation,” Am. J. Respir. Crit. Care Med.163(2), 540–577 (2001). [CrossRef] [PubMed]
  2. S. Baudouin, S. Blumenthal, B. Cooper, C. Davidson, A. Davison, M. Elliott, W. Kinnear, R. Paton, E. Sawicka, and British Thoracic Society Standards of Care Committee, “Non-invasive ventilation in acute respiratory failure,” Thorax57(3), 192–211 (2002). [CrossRef] [PubMed]
  3. B. J. Semmes, M. J. Tobin, J. V. Snyder, and A. Grenvik, “Subjective and Objective Measurement of Tidal Volume in Critically Ill Patients,” Chest87(5), 577–579 (1985). [CrossRef] [PubMed]
  4. M. Folke, L. Cernerud, M. Ekström, and B. Hök, “Critical review of non-invasive respiratory monitoring in medical care,” Med. Biol. Eng. Comput.41(4), 377–383 (2003). [CrossRef] [PubMed]
  5. H. Watson, “The technology of respiratory inductance plethysmography,” ISAM Proc.3rd Intl. Symp. Ambulatory Monitoring, (Academic, San Diego, Cslig., 1980), p. 537.
  6. G. B. Drummond, A. F. Nimmo, and R. A. Elton, “Thoracic impedance used for measuring chest wall movement in postoperative patients,” Br. J. Anaesth.77(3), 327–332 (1996). [CrossRef] [PubMed]
  7. C. Davis, A. Mazzolini, and D. Murphy, “A new fibre optic sensor for respiratory monitoring,” Australas. Phys. Eng. Sci. Med.20(4), 214–219 (1997). [PubMed]
  8. A. Aliverti, R. Dellacá, P. Pelosi, D. Chiumello, A. Pedotti, and L. Gattinoni, “Optoelectronic Plethysmography in Intensive Care Patients,” Am. J. Respir. Crit. Care Med.161(5), 1546–1552 (2000). [CrossRef] [PubMed]
  9. T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” J. Biomed. Opt.12(6), 064003 (2007). [CrossRef] [PubMed]
  10. T. Meier, H. Luepschen, J. Karsten, T. Leibecke, M. Grossherr, H. Gehring, and S. Leonhardt, “Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography,” Intensive Care Med.34(3), 543–550 (2008). [CrossRef] [PubMed]
  11. K. Konno and J. Mead, “Measurement of the separate volume changes of rib cage and abdomen during breathing,” J. Appl. Physiol.22(3), 407–422 (1967). [PubMed]
  12. J. F. Masa, A. Jiménez, J. Durán, F. Capote, C. Monasterio, M. Mayos, J. Terán, L. Hernández, F. Barbé, A. Maimó, M. Rubio, and J. M. Montserrat, “Alternative Methods of Titrating Continuous Positive Airway Pressure: A Large Multicenter study,” Am. J. Respir. Crit. Care Med.170(11), 1218–1224 (2004). [CrossRef] [PubMed]
  13. R. C. C. Barbosa, C. R. Carvalho, and H. T. Moriya, “Respiratory inductive plethysmography: a comparative study between isovolume maneuver calibration and qualitative diagnostic calibration in healthy volunteers assessed in different positions,” J. Bras. Pneumol.38(2), 194–201 (2012). [CrossRef] [PubMed]
  14. P. Neumann, J. Zinserling, C. Haase, M. Sydow, and H. Burchardi, “Evaluation of Respiratory Inductive Plethysmography in Controlled Ventilation: Measurement of Tidal Volume and PEEP-Induced Changes of End-expiratory Lung Volume,” Chest113(2), 443–451 (1998). [CrossRef] [PubMed]
  15. M. J. Tobin, G. Jenouri, B. Lind, H. Watson, A. Schneider, and M. A. Sackner, “Validation of Respiratory Inductive Plethysmography in Patients with Pulmonary Disease,” Chest83(4), 615–620 (1983). [CrossRef] [PubMed]
  16. E. Bar-Yishay, A. Putilov, and S. Einav, “Automated, real-time calibration of the respiratory inductance plethysmograph and its application in newborn infants,” Physiol. Meas.24(1), 149–163 (2003). [CrossRef] [PubMed]
  17. P. Blankman and D. Gommers, “Lung monitoring at the bedside in mechanically ventilated patients,” Curr. Opin. Crit. Care18(3), 261–266 (2012). [CrossRef] [PubMed]
  18. K. F. Whyte, M. Gugger, G. A. Gould, J. Molloy, P. K. Wraith, and N. J. Douglas, “Accuracy of respiratory inductive plethysmograph in measuring tidal volume during sleep,” J. Appl. Physiol.71(5), 1866–1871 (1991). [PubMed]
  19. N. O. T. Strömberg, “Error analysis of a natural breathing calibration method for respiratory inductive plethysmography,” Med. Biol. Eng. Comput.39(3), 310–314 (2001). [CrossRef] [PubMed]
  20. T. Erdogan, “Cladding-mode resonances in short- and long- period fiber grating filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997). [CrossRef]
  21. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).
  22. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003). [CrossRef]
  23. A. Othonos and K. Kalli, Fibre Bragg gratings:fundamentals and applications in telecommunications and sensing (Artech House, 1999).
  24. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Quantum Electron.5(5), 1373–1378 (1999). [CrossRef]
  25. M. D. Petrović, A. Daničić, V. Atanasoski, S. Radosavljević, V. Prodanović, N. Miljković, J. Petrović, D. Petrović, B. Bojović, Lj. Hadžievski, T. Allsop, G. Lloyd, and D. J. Webb, “Fibre-grating sensors for the measurement of physiological pulsations,” Phys. Scr. TT157, 014022 (2013). [CrossRef]
  26. B. Bojović, M. Vukčević, J. Petrovic, M. D. Petrović, I. Ilić, A. Daničić, T. Allsop, and Lj. Hadžievski, “Apparatus and method for monitoring respiratory volumes and synchroniyation of triggering in mechanical ventilation by measuring the local curvature of the torso surface,” Patent Application No. P2012/0373 filed with the IP Office of Serbia.
  27. D. G. Altman and J. M. Bland, “Measurement in Medicine: the Analysis of Method Comparison Studies,” Statistician32(3), 307–317 (1983). [CrossRef]
  28. T. Allsop, D. J. Webb, and I. Bennion, “Investigations of the spectral sensitivity of Long Period Gratings fabricated in three-layered optical fiber,” J. Lightwave Technol.21(1), 264–268 (2003). [CrossRef]
  29. T. Allsop, R. Bhamber, G. Lloyd, M. R. Miller, A. Dixon, D. J. Webb, J. D. Ania Castañón, and I. Bennion, “Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings,” J. Biomed. Opt.17(11), 117001 (2012). [CrossRef] [PubMed]
  30. J. L. Werchowski, M. H. Sanders, J. P. Costantino, F. C. Sciurba, and R. M. Rogers, “Inductance plethysmography measurement of CPAP-induced changes in end-expiratory lung volume,” J. Appl. Physiol.68(4), 1732–1738 (1990). [PubMed]
  31. V. von Tscharner, B. Eskofier, and P. Federolf, “Removal of the electrocardiogram signal from surface EMG recordings using non-linearly scaled wavelets,” J. Electromyogr. Kinesiol.21(4), 683–688 (2011). [CrossRef] [PubMed]
  32. J. Iriarte, E. Urrestarazu, M. Valencia, M. Alegre, A. Malanda, C. Viteri, and J. Artieda, “Independent Component Analysis as a Tool to Eliminate Artifacts in EEG: A Quantitative Study,” J. Clin. Neurophysiol.20(4), 249–257 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited