OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1190–1202

Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence

Susanta K. Sarkar, Ambika Bumb, Xufeng Wu, Kem A. Sochacki, Peter Kellman, Martin W. Brechbiel, and Keir C. Neuman  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1190-1202 (2014)
http://dx.doi.org/10.1364/BOE.5.001190


View Full Text Article

Enhanced HTML    Acrobat PDF (1759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sensitivity and resolution of fluorescence-based imaging in vivo is often limited by autofluorescence and other background noise. To overcome these limitations, we have developed a wide-field background-free imaging technique based on magnetic modulation of fluorescent nanodiamond emission. Fluorescent nanodiamonds are bright, photo-stable, biocompatible nanoparticles that are promising probes for a wide range of in vitro and in vivo imaging applications. Our readily applied background-free imaging technique improves the signal-to-background ratio for in vivo imaging up to 100-fold. This technique has the potential to significantly improve and extend fluorescent nanodiamond imaging capabilities on diverse fluorescence imaging platforms.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 6, 2014
Manuscript Accepted: March 7, 2014
Published: March 14, 2014

Citation
Susanta K. Sarkar, Ambika Bumb, Xufeng Wu, Kem A. Sochacki, Peter Kellman, Martin W. Brechbiel, and Keir C. Neuman, "Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence," Biomed. Opt. Express 5, 1190-1202 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep.528(1), 1–45 (2013). [CrossRef]
  2. F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: A review,” Phys. Status Solidi203(13), 3207–3225 (2006). [CrossRef]
  3. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A.104(3), 727–732 (2007). [CrossRef] [PubMed]
  4. S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc.127(50), 17604–17605 (2005). [CrossRef] [PubMed]
  5. L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New J. Phys.13, 045021 (2011).
  6. A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budker, “Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” Phys. Rev. Lett.108(19), 197601 (2012). [CrossRef] [PubMed]
  7. Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol.3(5), 284–288 (2008). [CrossRef] [PubMed]
  8. N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, and H. C. Chang, “In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans,” Nano Lett.10(9), 3692–3699 (2010). [CrossRef] [PubMed]
  9. V. Vaijayanthimala, P. Y. Cheng, S. H. Yeh, K. K. Liu, C. H. Hsiao, J. I. Chao, and H. C. Chang, “The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent,” Biomaterials33(31), 7794–7802 (2012). [CrossRef] [PubMed]
  10. A. M. Schrand, H. J. Huang, C. Carlson, J. J. Schlager, E. Omacr Sawa, S. M. Hussain, and L. M. Dai, “Are diamond nanoparticles cytotoxic?” J. Phys. Chem. B111(1), 2–7 (2007). [CrossRef] [PubMed]
  11. E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson, H. J. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, “Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment,” Sci. Transl. Med.3(73), 73ra21 (2011). [CrossRef] [PubMed]
  12. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003). [CrossRef] [PubMed]
  13. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol.4(11), 710–711 (2009). [CrossRef] [PubMed]
  14. J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt.10, 041207 (2005).
  15. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem.202(2), 316–330 (1992). [CrossRef] [PubMed]
  16. J. H. Scofield, “Frequency-domain description of a lock-in amplifier,” Am. J. Phys.62(2), 129–132 (1994). [CrossRef]
  17. R. H. Dicke, “The measurement of thermal radiation at microwave frequencies,” Rev. Sci. Instrum.17(7), 268–275 (1946). [CrossRef] [PubMed]
  18. J. N. Anker and R. Kopelman, “Magnetically modulated optical nanoprobes,” Appl. Phys. Lett.82(7), 1102–1104 (2003). [CrossRef]
  19. G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff, and Y. Yan, “Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells,” Proc. Natl. Acad. Sci. U.S.A.105(46), 17789–17794 (2008). [CrossRef] [PubMed]
  20. C. I. Richards, J. C. Hsiang, D. Senapati, S. Patel, J. Yu, T. Vosch, and R. M. Dickson, “Optically modulated fluorophores for selective fluorescence signal recovery,” J. Am. Chem. Soc.131(13), 4619–4621 (2009). [CrossRef] [PubMed]
  21. R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett.12(11), 5726–5732 (2012). [CrossRef] [PubMed]
  22. R. Chapman and T. Plakhoitnik, “Background-free imaging of luminescent nanodiamonds using external magnetic field for contrast enhancement,” Opt. Lett.38(11), 1847–1849 (2013). [CrossRef] [PubMed]
  23. A. Bumb, C. A. Regino, J. G. Egen, M. Bernardo, P. J. Dobson, R. N. Germain, P. L. Choyke, and M. W. Brechbiel, “Trafficking of a dual-modality magnetic resonance and fluorescence imaging superparamagnetic iron oxide-based nanoprobe to lymph nodes,” Mol. Imaging Biol.13(6), 1163–1172 (2011). [CrossRef] [PubMed]
  24. S. T. Proulx and M. Detmar, “Molecular mechanisms and imaging of lymphatic metastasis,” Exp. Cell Res.319(11), 1611–1617 (2013). [CrossRef] [PubMed]
  25. A. Bumb, S. K. Sarkar, N. Billington, M. W. Brechbiel, and K. C. Neuman, “Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization,” J. Am. Chem. Soc.135(21), 7815–7818 (2013). [CrossRef] [PubMed]
  26. N. Kosaka, M. Ogawa, N. Sato, P. L. Choyke, and H. Kobayashi, “In vivo real-time, multicolor, quantum dot lymphatic imaging,” J. Invest. Dermatol.129(12), 2818–2822 (2009). [CrossRef] [PubMed]
  27. C. Chefd'Hotel, G. Hermosillo, and O. Faugeras, “Flows of diffeomorphisms for multimodal image registration,” in Biomedical Imaging, 2002. Proceedings. 2002 IEEE International Symposium on(IEEE, 2002), pp. 753–756.
  28. G. Hermosillo, C. Chefd’Hotel, and O. Faugeras, “Variational methods for multimodal image matching,” Int. J. Comput. Vis.50(3), 329–343 (2002). [CrossRef]
  29. J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys.13(2), 025025 (2011). [CrossRef]
  30. N. D. Lai, D. Zheng, F. Jelezko, F. Treussart, and J.-F. Roch, “Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal,” Appl. Phys. Lett.95(13), 133101 (2009). [CrossRef]
  31. V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B82(20), 201202 (2010). [CrossRef]
  32. H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt.14, 064011 (2009).
  33. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett.7(6), 1711–1716 (2007). [CrossRef] [PubMed]
  34. A. Hegyi and E. Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Lett.13(3), 1173–1178 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited