OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1217–1232

Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient

Blake R. Klyen, Loretta Scolaro, Tea Shavlakadze, Miranda D. Grounds, and David D. Sampson  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1217-1232 (2014)
http://dx.doi.org/10.1364/BOE.5.001217


View Full Text Article

Enhanced HTML    Acrobat PDF (1819 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(290.1350) Scattering : Backscattering
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Image Processing

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 9, 2014
Manuscript Accepted: March 11, 2014
Published: March 19, 2014

Citation
Blake R. Klyen, Loretta Scolaro, Tea Shavlakadze, Miranda D. Grounds, and David D. Sampson, "Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient," Biomed. Opt. Express 5, 1217-1232 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, “In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography,” Opt. Express14(4), 1547–1556 (2006). [CrossRef] [PubMed]
  2. B. R. Klyen, J. J. Armstrong, S. G. Adie, H. G. Radley, M. D. Grounds, and D. D. Sampson, “Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice,” J. Biomed. Opt.13(1), 011003 (2008). [CrossRef] [PubMed]
  3. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011). [CrossRef] [PubMed]
  4. R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve47(4), 588–590 (2013). [CrossRef] [PubMed]
  5. K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010). [CrossRef] [PubMed]
  6. M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008). [CrossRef] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  8. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer-Verlag Berlin Heidelberg, 2008).
  9. T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004). [CrossRef] [PubMed]
  10. T. Shavlakadze, M. Davies, J. D. White, and M. D. Grounds, “Early regeneration of whole skeletal muscle grafts is unaffected by overexpression of IGF-1 in MLC/mIGF-1 transgenic mice,” J. Histochem. Cytochem.52(7), 873–883 (2004). [CrossRef] [PubMed]
  11. M. D. Grounds, M. Davies, J. Torrisi, T. Shavlakadze, J. White, and S. Hodgetts, “Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice,” Cell Tissue Res.320(3), 509–515 (2005). [CrossRef] [PubMed]
  12. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010). [CrossRef] [PubMed]
  13. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012). [CrossRef] [PubMed]
  14. P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.19(2), 021111 (2014). [CrossRef] [PubMed]
  15. L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013). [CrossRef] [PubMed]
  16. X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013). [CrossRef] [PubMed]
  17. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express12(2), 249–259 (2004). [CrossRef] [PubMed]
  18. F. J. van der Meer, D. J. Faber, J. Perrée, G. Pasterkamp, D. Baraznji Sassoon, and T. G. van Leeuwen, “Quantitative optical coherence tomography of arterial wall components,” Lasers Med. Sci.20(1), 45–51 (2005). [CrossRef] [PubMed]
  19. C. Y. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008). [CrossRef] [PubMed]
  20. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  21. Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011). [CrossRef] [PubMed]
  22. Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012). [CrossRef] [PubMed]
  23. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett.32(4), 385–387 (2007). [CrossRef] [PubMed]
  24. H. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: A comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012). [CrossRef] [PubMed]
  25. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003). [CrossRef]
  26. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  27. G. Hall, S. L. Jacques, K. W. Eliceiri, and P. J. Campagnola, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express3(11), 2707–2719 (2012). [CrossRef] [PubMed]
  28. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Health Sci.04(01), 9–38 (2011). [CrossRef]
  29. J. J. Xia, E. P. Berg, J. W. Lee, and G. Yao, “Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region,” Meat Sci.75(1), 78–83 (2007). [CrossRef] [PubMed]
  30. A. M. K. Nilsson, R. Berg, and S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt.34(21), 4609–4619 (1995). [CrossRef] [PubMed]
  31. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  32. S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol.58(11), R37–R61 (2013). [CrossRef] [PubMed]
  33. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999). [CrossRef] [PubMed]
  34. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011). [CrossRef] [PubMed]
  35. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011). [CrossRef] [PubMed]
  36. X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014). [CrossRef] [PubMed]
  37. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express5(1), 322–337 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited