OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1250–1261

In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos

David A. Simpson, Amelia J. Thompson, Mark Kowarsky, Nida F. Zeeshan, Michael S. J. Barson, Liam T. Hall, Yan Yan, Stefan Kaufmann, Brett C. Johnson, Takeshi Ohshima, Frank Caruso, Robert E. Scholten, Robert B. Saint, Michael J. Murray, and Lloyd C. L. Hollenberg  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1250-1261 (2014)
http://dx.doi.org/10.1364/BOE.5.001250


View Full Text Article

Enhanced HTML    Acrobat PDF (2568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we incorporate and image individual fluorescent nanodiamonds in the powerful genetic model system Drosophila melanogaster. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development, up to a depth of 40 µm. The majority of nanodiamonds in the blastoderm cells during cellularization exhibit free diffusion with an average diffusion coefficient of (6 ± 3) × 10−3 µm2/s, (mean ± SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 ± 0.10 µm/s (mean ± SD) µm/s and an average applied force of 0.07 ± 0.05 pN (mean ± SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 ± 35) × 10−3 µm2/s (mean ± SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.

© 2014 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(180.2520) Microscopy : Fluorescence microscopy
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 18, 2014
Published: March 20, 2014

Citation
David A. Simpson, Amelia J. Thompson, Mark Kowarsky, Nida F. Zeeshan, Michael S. J. Barson, Liam T. Hall, Yan Yan, Stefan Kaufmann, Brett C. Johnson, Takeshi Ohshima, Frank Caruso, Robert E. Scholten, Robert B. Saint, Michael J. Murray, and Lloyd C. L. Hollenberg, "In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos," Biomed. Opt. Express 5, 1250-1261 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature400(6740), 184–189 (1999). [CrossRef] [PubMed]
  2. M. P. Sheetz and J. A. Spudich, “Movement of myosin-coated fluorescent beads on actin cables in vitro,” Nature303(5912), 31–35 (1983). [CrossRef] [PubMed]
  3. C. Kural, H. Kim, S. Syed, G. Goshima, V. I. Gelfand, and P. R. Selvin, “Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement?” Science308(5727), 1469–1472 (2005). [CrossRef] [PubMed]
  4. J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner, “Real-Time DNA Sequencing from Single Polymerase Molecules,” Science323(5910), 133–138 (2009). [CrossRef] [PubMed]
  5. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005). [CrossRef] [PubMed]
  6. M. J. Saxton and K. Jacobson, “Single-particle tracking: Applications to Membrane Dynamics,” Annu. Rev. Biophys. Biomol. Struct.26(1), 373–399 (1997). [CrossRef] [PubMed]
  7. C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. U.S.A.104(3), 727–732 (2007). [CrossRef] [PubMed]
  8. O. Faklaris, D. Garrot, V. Joshi, F. Druon, J. P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway,” Small4(12), 2236–2239 (2008). [CrossRef] [PubMed]
  9. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J. C. Arnault, A. Thorel, J. P. Boudou, P. A. Curmi, and F. Treussart, “Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells,” ACS Nano3(12), 3955–3962 (2009). [CrossRef] [PubMed]
  10. Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol.3(5), 284–288 (2008). [CrossRef] [PubMed]
  11. L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, and L. C. L. Hollenberg, “Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells,” Nat. Nanotechnol.6(6), 358–363 (2011). [CrossRef] [PubMed]
  12. N. Mohan, C.-S. Chen, H.-H. Hsieh, Y.-C. Wu, and H.-C. Chang, “In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans,” Nano Lett.10(9), 3692–3699 (2010). [CrossRef] [PubMed]
  13. V. Vaijayanthimala, P.-Y. Cheng, S.-H. Yeh, K.-K. Liu, C.-H. Hsiao, J.-I. Chao, and H.-C. Chang, “The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent,” Biomaterials33(31), 7794–7802 (2012). [CrossRef] [PubMed]
  14. Y. Kuo, T.-Y. Hsu, Y.-C. Wu, and H.-C. Chang, “Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo,” Biomaterials34(33), 8352–8360 (2013). [CrossRef] [PubMed]
  15. R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-Time Background-Free Selective Imaging of Fluorescent Nanodiamonds in Vivo,” Nano Lett.12(11), 5726–5732 (2012). [CrossRef] [PubMed]
  16. J. M. Crawford, N. Harden, T. Leung, L. Lim, and D. P. Kiehart, “Cellularization in Drosophila melanogaster Is Disrupted by the Inhibition of Rho Activity and the Activation of Cdc42 Function,” Dev. Biol.204(1), 151–164 (1998). [CrossRef] [PubMed]
  17. A. M. Sokac and E. Wieschaus, “Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization,” Dev. Cell14(5), 775–786 (2008). [CrossRef] [PubMed]
  18. A. Royou, C. Field, J. C. Sisson, W. Sullivan, and R. Karess, “Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos,” Mol. Biol. Cell15(2), 838–850 (2003). [CrossRef] [PubMed]
  19. T. Lecuit, “Junctions and vesicular trafficking during Drosophila cellularization,” J. Cell Sci.117(16), 3427–3433 (2004). [CrossRef] [PubMed]
  20. A. Mazumdar and M. Mazumdar, “How one becomes many: blastoderm cellularization in Drosophila melanogaster,” Bioessays24(11), 1012–1022 (2002). [CrossRef] [PubMed]
  21. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002). [CrossRef]
  22. R. Mallik, B. C. Carter, S. A. Lex, S. J. King, and S. P. Gross, “Cytoplasmic dynein functions as a gear in response to load,” Nature427(6975), 649–652 (2004). [CrossRef] [PubMed]
  23. R. M. Mazo, Brownian Motion: Fluctuations, Dynamics, and Applications (Clarendon press Oxford, 2002).
  24. M. P. Sheetz and J. A. Spudich, “Movement of myosin-coated fluorescent beads on actin cables in vitro,” Nature303, 31–35 (1983).
  25. E. H. Chen, O. Gaathon, M. E. Trusheim, and D. Englund, “Wide-Field Multispectral Super-Resolution Imaging Using Spin-Dependent Fluorescence in Nanodiamonds,” Nano Lett.13(5), 2073–2077 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited