OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1262–1274

Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies

Huilin Zhu, Yuebo Fan, Huan Guo, Dan Huang, and Sailing He  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1262-1274 (2014)
http://dx.doi.org/10.1364/BOE.5.001262


View Full Text Article

Enhanced HTML    Acrobat PDF (5064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Autism spectrum disorder (ASD) is a neuro-developmental disorder, which has been associated with atypical neural synchronization. In this study, functional near infrared spectroscopy (fNIRS) was used to study the differences in functional connectivity in bilateral inferior frontal cortices (IFC) and bilateral temporal cortices (TC) between ASD and typically developing (TD) children between 8 and 11 years of age. As the first report of fNIRS study on the resting state functional connectivity (RSFC) in children with ASD, ten children with ASD and ten TD children were recruited in this study for 8 minute resting state measurement. Compared to TD children, children with ASD showed reduced interhemispheric connectivity in TC. Children with ASD also showed significantly lower local connectivity in bilateral temporal cortices. In contrast to TD children, children with ASD did not show typical patterns of symmetry in functional connectivity in temporal cortex. These results support the feasibility of using the fNIRS method to assess atypical functional connectivity of cortical responses of ASD and its potential application in diagnosis.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5380) Medical optics and biotechnology : Physiology
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Functional Imaging

History
Original Manuscript: January 29, 2014
Revised Manuscript: March 20, 2014
Manuscript Accepted: March 21, 2014
Published: March 27, 2014

Citation
Huilin Zhu, Yuebo Fan, Huan Guo, Dan Huang, and Sailing He, "Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies," Biomed. Opt. Express 5, 1262-1274 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997). [CrossRef] [PubMed]
  3. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett.154(1-2), 101–104 (1993). [CrossRef] [PubMed]
  4. M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 737–742 (1997). [CrossRef] [PubMed]
  5. Z. Guo, F. Cai, and S. He, “Optimization for Brain Activity Monitoring with Near Infrared Light in a Four-Layered Model of the Human Head,” Prog. Electromagnetics Res.140, 277–295 (2013). [CrossRef]
  6. C.-M. Lu, Y.-J. Zhang, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods186(2), 242–249 (2010). [CrossRef] [PubMed]
  7. B. R. White, S. M. Liao, S. L. Ferradal, T. E. Inder, and J. P. Culver, “Bedside optical imaging of occipital resting-state functional connectivity in neonates,” Neuroimage59(3), 2529–2538 (2012). [CrossRef] [PubMed]
  8. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010). [CrossRef] [PubMed]
  9. R. E. Vanderwert and C. A. Nelson, “The use of near-infrared spectroscopy in the study of typical and atypical development,” Neuroimage85(Pt 1), 264–271 (2014). [CrossRef] [PubMed]
  10. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med.34(4), 537–541 (1995). [CrossRef] [PubMed]
  11. M. E. Raichle, “Two views of brain function,” Trends Cogn. Sci. (Regul. Ed.)14(4), 180–190 (2010). [CrossRef] [PubMed]
  12. P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron52(1), 155–168 (2006). [CrossRef] [PubMed]
  13. American Psychiatry Association, Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR® (American Psychiatric Pub, 2000).
  14. E. Courchesne, R. Carper, and N. Akshoomoff, “Evidence of brain overgrowth in the first year of life in autism,” JAMA290(3), 337–344 (2003). [CrossRef] [PubMed]
  15. R. A. Carper and E. Courchesne, “Inverse correlation between frontal lobe and cerebellum sizes in children with autism,” Brain123(4), 836–844 (2000). [CrossRef] [PubMed]
  16. N. Boddaert, N. Chabane, H. Gervais, C. D. Good, M. Bourgeois, M. H. Plumet, C. Barthélémy, M. C. Mouren, E. Artiges, Y. Samson, F. Brunelle, R. S. Frackowiak, and M. Zilbovicius, “Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study,” Neuroimage23(1), 364–369 (2004). [CrossRef] [PubMed]
  17. G. M. McAlonan, V. Cheung, C. Cheung, J. Suckling, G. Y. Lam, K. S. Tai, L. Yip, D. G. Murphy, and S. E. Chua, “Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism,” Brain128(2), 268–276 (2004). [CrossRef] [PubMed]
  18. R. K. Kana, T. A. Keller, N. J. Minshew, and M. A. Just, “Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks,” Biol. Psychiatry62(3), 198–206 (2007). [CrossRef] [PubMed]
  19. M. Dapretto, M. S. Davies, J. H. Pfeifer, A. A. Scott, M. Sigman, S. Y. Bookheimer, and M. Iacoboni, “Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders,” Nat. Neurosci.9(1), 28–30 (2006). [CrossRef] [PubMed]
  20. G. Dawson, C. Finley, S. Phillips, and L. Galpert, “Hemispheric specialization and the language abilities of autistic children,” Child Dev.57(6), 1440–1453 (1986). [CrossRef] [PubMed]
  21. M. R. Prior and J. L. Bradshaw, “Hemisphere functioning in autistic children,” Cortex15(1), 73–81 (1979). [CrossRef] [PubMed]
  22. U. Frith and C. D. Frith, “Development and neurophysiology of mentalizing,” Philos. Trans. R. Soc. Lond. B Biol. Sci.358(1431), 459–473 (2003). [CrossRef] [PubMed]
  23. F. Castelli, C. Frith, F. Happé, and U. Frith, “Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes,” Brain125(8), 1839–1849 (2002). [CrossRef] [PubMed]
  24. L. Brothers, “The social brain: a project for integrating primate behavior and neurophysiology in a new domain,” Concepts Neurosci.1, 27–51 (1990).
  25. S. Baron-Cohen, H. A. Ring, S. Wheelwright, E. T. Bullmore, M. J. Brammer, A. Simmons, and S. C. Williams, “Social intelligence in the normal and autistic brain: an fMRI study,” Eur. J. Neurosci.11(6), 1891–1898 (1999). [CrossRef] [PubMed]
  26. H. Koshino, R. K. Kana, T. A. Keller, V. L. Cherkassky, N. J. Minshew, and M. A. Just, “fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas,” Cereb. Cortex18(2), 289–300 (2008). [CrossRef] [PubMed]
  27. M. A. Just, V. L. Cherkassky, T. A. Keller, and N. J. Minshew, “Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity,” Brain127(8), 1811–1821 (2004). [CrossRef] [PubMed]
  28. G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev. Neurosci.27(1), 169–192 (2004). [CrossRef] [PubMed]
  29. M. R. Herbert, D. A. Ziegler, N. Makris, P. A. Filipek, T. L. Kemper, J. J. Normandin, H. A. Sanders, D. N. Kennedy, and V. S. Caviness., “Localization of white matter volume increase in autism and developmental language disorder,” Ann. Neurol.55(4), 530–540 (2004). [CrossRef] [PubMed]
  30. M. Murias, S. J. Webb, J. Greenson, and G. Dawson, “Resting state cortical connectivity reflected in EEG coherence in individuals with autism,” Biol. Psychiatry62(3), 270–273 (2007). [CrossRef] [PubMed]
  31. V. L. Cherkassky, R. K. Kana, T. A. Keller, and M. A. Just, “Functional connectivity in a baseline resting-state network in autism,” Neuroreport17(16), 1687–1690 (2006). [CrossRef] [PubMed]
  32. S.-J. Weng, J. L. Wiggins, S. J. Peltier, M. Carrasco, S. Risi, C. Lord, and C. S. Monk, “Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders,” Brain Res.1313, 202–214 (2010). [CrossRef] [PubMed]
  33. M. Assaf, K. Jagannathan, V. D. Calhoun, L. Miller, M. C. Stevens, R. Sahl, J. G. O’Boyle, R. T. Schultz, and G. D. Pearlson, “Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients,” Neuroimage53(1), 247–256 (2010). [CrossRef] [PubMed]
  34. D. P. Kennedy and E. Courchesne, “The intrinsic functional organization of the brain is altered in autism,” Neuroimage39(4), 1877–1885 (2008). [CrossRef] [PubMed]
  35. J. S. Anderson, T. J. Druzgal, A. Froehlich, M. B. DuBray, N. Lange, A. L. Alexander, T. Abildskov, J. A. Nielsen, A. N. Cariello, J. R. Cooperrider, E. D. Bigler, and J. E. Lainhart, “Decreased interhemispheric functional connectivity in autism,” Cereb. Cortex21(5), 1134–1146 (2011). [CrossRef] [PubMed]
  36. I. Dinstein, K. Pierce, L. Eyler, S. Solso, R. Malach, M. Behrmann, and E. Courchesne, “Disrupted neural synchronization in toddlers with autism,” Neuron70(6), 1218–1225 (2011). [CrossRef] [PubMed]
  37. Y. Kawakubo, H. Kuwabara, K.-i. Watanabe, M. Minowa, T. Someya, I. Minowa, T. Kono, H. Nishida, T. Sugiyama, N. Kato, and K. Kasai, “Impaired prefrontal hemodynamic maturation in autism and unaffected siblings,” PLoS ONE4(9), e6881 (2009). [CrossRef] [PubMed]
  38. U. Chaudhary, M. Hall, A. Gutierrez, D. Messinger, G. Rey, and A. Godavarty, “Joint attention studies in normal and autistic children using NIRS,” Proc. SPIE7883, 788348 (2011). [CrossRef]
  39. Y. Kita, A. Gunji, Y. Inoue, T. Goto, K. Sakihara, M. Kaga, M. Inagaki, and T. Hosokawa, “Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study,” Brain Dev.33(6), 494–503 (2011). [CrossRef] [PubMed]
  40. L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: Anatomical correlation via the international 10-10 system,” Neuroimage46(1), 64–72 (2009). [CrossRef] [PubMed]
  41. P. M. Macey, K. E. Macey, R. Kumar, and R. M. Harper, “A method for removal of global effects from fMRI time series,” Neuroimage22(1), 360–366 (2004). [CrossRef] [PubMed]
  42. M. D. Fox, D. Zhang, A. Z. Snyder, and M. E. Raichle, “The global signal and observed anticorrelated resting state brain networks,” J. Neurophysiol.101(6), 3270–3283 (2009). [CrossRef] [PubMed]
  43. D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage85(Pt 1), 1–5 (2014). [CrossRef] [PubMed]
  44. Y.-J. Zhang, C.-M. Lu, B. B. Biswal, Y.-F. Zang, D.-L. Peng, and C.-Z. Zhu, “Detecting resting-state functional connectivity in the language system using functional near-infrared spectroscopy,”J. Biomed. Opt.15, 047003 (2010).
  45. G. Hickok and D. Poeppel, “The cortical organization of speech processing,” Nat. Rev. Neurosci.8(5), 393–402 (2007). [CrossRef] [PubMed]
  46. A. Devor, I. Ulbert, A. K. Dunn, S. N. Narayanan, S. R. Jones, M. L. Andermann, D. A. Boas, and A. M. Dale, “Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity,” Proc. Natl. Acad. Sci. U.S.A.102(10), 3822–3827 (2005). [CrossRef] [PubMed]
  47. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage47(1), 148–156 (2009). [CrossRef] [PubMed]
  48. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” Neuroimage44(3), 893–905 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited