OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 1275–1289

Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow

Hari M. Varma, Claudia P. Valdes, Anna K. Kristoffersen, Joseph P. Culver, and Turgut Durduran  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 1275-1289 (2014)
http://dx.doi.org/10.1364/BOE.5.001275


View Full Text Article

Enhanced HTML    Acrobat PDF (2189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms.

© 2014 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.6955) Imaging systems : Tomographic imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Speckle Imaging and Diagnostics

History
Original Manuscript: January 31, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 11, 2014
Published: March 28, 2014

Citation
Hari M. Varma, Claudia P. Valdes, Anna K. Kristoffersen, Joseph P. Culver, and Turgut Durduran, "Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow," Biomed. Opt. Express 5, 1275-1289 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-1275


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Devor, S. Sakadžić, V. Srinivasan, M. Yaseen, K. Nizar, P. Saisan, P. Tian, A. Dale, S. Vinogradov, M. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32, 1259–1276 (2012). [CrossRef] [PubMed]
  2. M. J. Leahy, J. G. Enfield, N. T. Clancy, J. ODoherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl.22, 105–126 (2007). [CrossRef]
  3. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010). [CrossRef]
  4. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” NeuroImage85, 51–63 (2014). [CrossRef]
  5. C. Riva, B. Ross, and G. B. Benedek, “Laser doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. Visual Sci.11, 936–944 (1972).
  6. M. Stern, “In vivo evaluation of microcirculation by coherent light scattering.” Nature254, 56–58 (1975). [CrossRef] [PubMed]
  7. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci.24, 269–283 (2009). [CrossRef]
  8. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37, 326–330 (1981). [CrossRef]
  9. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40, 367–377 (2012). [CrossRef]
  10. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett.75, 1855–1858 (1995). [CrossRef] [PubMed]
  11. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. J. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14, 1125–1144 (2006). [CrossRef] [PubMed]
  12. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).
  13. H. M. Varma, A. K. Nandakumaran, and R. M. Vasu, “Study of turbid media with light: Recovery of mechanical and optical properties from boundary measurement of intensity autocorrelation of light,” J. Opt. Soc. Am. A26, 1472–1483 (2009). [CrossRef]
  14. H. M. Varma, B. Banerjee, D. Roy, A. K. Nandakumaran, and R. M. Vasu, “Convergence analysis of the newton algorithm and a pseudo-time marching scheme for diffuse correlation tomography,” J. Opt. Soc. Am. A27, 259–267 (2010). [CrossRef]
  15. N. Hyvönen, A. K. Nandakumaran, H. M. Varma, and R. M. Vasu, “Generalized eigenvalue decomposition of the field autocorrelation in correlation diffusion of photons in turbid media,” Math. Meth. Appl. Sci. (2012).
  16. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003). [CrossRef] [PubMed]
  17. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt.46, 8506–8514 (2007). [CrossRef] [PubMed]
  18. T. Binzoni, T. S. Leung, D. Boggett, and D. Delpy, “Non-invasive laser doppler perfusion measurements of large tissue volumes and human skeletal muscle blood rms velocity,” Phys. Med. Biol.48, 2527 (2003). [CrossRef] [PubMed]
  19. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems25, 123010 (2009). [CrossRef]
  20. Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front. Neuroenerg.4, 103389 (2012). [CrossRef]
  21. V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum.73, 2336–2344 (2002). [CrossRef]
  22. A. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum.64, 2547–2549 (1993). [CrossRef]
  23. J. D. McKinney, M. A. Webster, K. J. Webb, and A. M. Weiner, “Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source,” Opt. Lett.25, 4–6 (2000). [CrossRef]
  24. B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbmann, “Correlation transfer- application of radiative transfer solution methods to photon correlation problems,” J. Thermophys. Heat Transf.6, 577–588 (1992). [CrossRef]
  25. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: development and application,” J. Quant. Spectrosc. Radiat. Transfer52, 713–727 (1994). [CrossRef]
  26. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14, 192–215 (1997). [CrossRef]
  27. S. A. Carp, N. Roche-Labarbe, M.-A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express2, 2047 (2011). [CrossRef] [PubMed]
  28. R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt, 20, 2097–2107 (1981). [CrossRef] [PubMed]
  29. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Trans. R. Soc., A369, 4390–4406 (2011). [CrossRef]
  30. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems15, R41 (1999). [CrossRef]
  31. C. Xu and Q. Zhu, “Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry,” J. Biomed. Opt.15, 036003 (2010). [CrossRef] [PubMed]
  32. J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Measurement22, R35 (2001). [CrossRef]
  33. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005). [CrossRef]
  34. M. v. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313 (1999). [CrossRef]
  35. V. A. Markel and J. C. Schotland, “On the convergence of the born series in optical tomography with diffuse light,” Inverse Problems23, 1445 (2007). [CrossRef]
  36. B. C. White, “Developing high-density diffuse optical tomography for neuroimaging,” Ph.D. thesis, Washington University in St. Louis (2012).
  37. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003). [CrossRef] [PubMed]
  38. S. Yuan, “Sensitivity, noise and quantitative model of laser speckle contrast imaging,” Ph.D. thesis, Tufts University (2008).
  39. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).
  40. H. He, Y. Tang, F. Zhou, J. Wang, Q. Luo, and P. Li, “Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging,” Opt. Lett.37, 3774–3776 (2012). [CrossRef] [PubMed]
  41. J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43, 21–28 (2011). [CrossRef] [PubMed]
  42. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, and B. J. T. B. Choi, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2, 1553–1563 (2011). [CrossRef] [PubMed]
  43. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38, 1401–1403 (2013). [CrossRef] [PubMed]
  44. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express21, 22854–22861 (2013). [CrossRef] [PubMed]
  45. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, “Imaging of dynamic heterogeneities in multiple-scattering media,” J. Opt. Soc. Am. A14, 185–191 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited