OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 4 — Apr. 1, 2014
  • pp: 990–999

Continuous noninvasive monitoring of changes in human skin optical properties during oral intake of different sugars with optical coherence tomography

Yuqing Zhang, Guoyong Wu, Huajiang Wei, Zhouyi Guo, Hongqin Yang, Yonghong He, Shusen Xie, and Ying Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 4, pp. 990-999 (2014)
http://dx.doi.org/10.1364/BOE.5.000990


View Full Text Article

Enhanced HTML    Acrobat PDF (1444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The objective of this study was to evaluate the effects of blood glucose concentration (BGC) on in vivo human skin optical properties after oral intake of different sugars. In vivo optical properties of human skin were measured with a spectral domain optical coherence tomography (SD-OCT). Experimental results show that increase of BGC causes a decrease in the skin attenuation coefficient. And the maximum decrements in mean attenuation coefficient of skin tissue after drinking glucose, sucrose and fructose solution are 47.0%, 36.4% and 16.5% compared with that after drinking water, respectively (p < 0.05). The results also show that blood glucose levels of the forearm skin tissue are delayed compared with finger-stick blood glucose, and there are significant differences in the time delays after oral intake of different sugars. The time delay between mean attenuation coefficient and BGC after drinking glucose solution is evidently larger than that after drinking sucrose solution, and that after drinking sucrose solution is larger than that after drinking fructose solution. Our pilot studies indicate that OCT technique is capable of non-invasive, real-time, and sensitive monitoring of skin optical properties in human subjects during oral intake of different sugars.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: December 3, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: February 12, 2014
Published: February 28, 2014

Citation
Yuqing Zhang, Guoyong Wu, Huajiang Wei, Zhouyi Guo, Hongqin Yang, Yonghong He, Shusen Xie, and Ying Liu, "Continuous noninvasive monitoring of changes in human skin optical properties during oral intake of different sugars with optical coherence tomography," Biomed. Opt. Express 5, 990-999 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-4-990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. X. Guo, A. Mandelis, and B. Zinman, “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry,” Biomed. Opt. Express3(11), 3012–3021 (2012). [CrossRef] [PubMed]
  2. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care27(5), 1047–1053 (2004). [CrossRef] [PubMed]
  3. D. Daneman, “Type 1 diabetes,” Lancet367(9513), 847–858 (2006). [CrossRef] [PubMed]
  4. M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type 2 diabetes: principles of pathogenesis and therapy,” Lancet365(9467), 1333–1346 (2005). [CrossRef] [PubMed]
  5. J. Y. Qu and B. C. Wilson, “Monte Carlo modeling studies of the effect of physiological factors andother analytes on the determination of glucose concentration in vivoby near infrared optical absorption and scattering measurements,” J. Biomed. Opt.2(3), 319–325 (1997). [CrossRef] [PubMed]
  6. J. T. Olesberg, L. Liu, V. Van Zee, and M. A. Arnold, “In vivo near-infrared spectroscopy of rat skin tissue with varying blood glucose levels,” Anal. Chem.78(1), 215–223 (2006). [CrossRef] [PubMed]
  7. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10(3), 031114 (2005). [CrossRef] [PubMed]
  8. J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem.82(20), 8382–8385 (2010). [CrossRef] [PubMed]
  9. N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Anal. Bioanal. Chem.400(9), 2871–2880 (2011). [CrossRef] [PubMed]
  10. N. C. Dingari, I. Barman, J. W. Kang, C. R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt.16(8), 087009 (2011). [CrossRef] [PubMed]
  11. Q. Wan, G. L. Coté, and J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt.10(2), 024029 (2005). [CrossRef] [PubMed]
  12. B. D. Cameron and Y. F. Li, “Polarization-based diffuse reflectance imaging for noninvasive measurement of glucose,” J. Diabetes Sci. Tech.1(6), 873–878 (2007). [CrossRef] [PubMed]
  13. G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: an in vivo study,” J. Diabetes Sci. Tech.5(2), 380–387 (2011). [CrossRef] [PubMed]
  14. R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther.9(1), 68–74 (2007). [CrossRef] [PubMed]
  15. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999). [PubMed]
  16. A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Glucose content monitoring with time-of-flight technique in aqueous Intralipid solution imitating human skin: Monte Carlo simulation,” Proc. SPIE5862, 586214 (2005). [CrossRef]
  17. M. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, and A. V. Priezzhev, “Measurements of glucose content in scattering media with time-of-flight technique; comparison with Monte Carlo simulations,” Proc. SPIE5474, 181–191 (2004). [CrossRef]
  18. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett.26(13), 992–994 (2001). [CrossRef] [PubMed]
  19. R. Kuranov, D. Prough, V. Sapozhnikova, I. Cicenaite, and R. Esenaliev, “In vivo application of 2-D lateral scanning mode optical coherence tomography for glucose sensing,” Proc. SPIE6007, 90–95 (2005). [CrossRef]
  20. R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography,” Phys. Med. Biol.51(16), 3885–3900 (2006). [CrossRef] [PubMed]
  21. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care25(12), 2263–2267 (2002). [CrossRef] [PubMed]
  22. R. Y. He, H. J. Wei, H. M. Gu, Z. G. Zhu, Y. Q. Zhang, X. Guo, and T. Cai, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomo graphy: a pilot study,” J. Biomed. Opt.17(10), 101513 (2012).
  23. K. V. Larin, T. Akkin, R. Esenaliev, M. Motamedi, and M. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentration,” Appl. Opt.43(17), 3408–3414 (2004).
  24. M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt.45(10), 2251–2260 (2006). [CrossRef] [PubMed]
  25. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.19(24), 2062–2064 (1994). [CrossRef] [PubMed]
  26. M. Kohl, M. Cope, M. Essenpreis, and D. Böcker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett.19(24), 2170–2172 (1994). [CrossRef] [PubMed]
  27. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bãcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett.22(3), 190–192 (1997). [CrossRef] [PubMed]
  28. L. Heinemann, U. Krämer, H.-M. Klötzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, “Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests,” Diabetes Technol. Ther.2(2), 211–220 (2000). [CrossRef] [PubMed]
  29. R. Poddar, S. R. Sharma, J. Andrews, and P. Sen, “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Curr. Sci.95(3), 340–344 (2008).
  30. M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol.40(7), 1267–1287 (1995). [CrossRef] [PubMed]
  31. X. D. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt.41(4), 792–801 (2002). [CrossRef] [PubMed]
  32. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  33. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt.32(30), 6032–6042 (1993). [CrossRef] [PubMed]
  34. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003). [CrossRef] [PubMed]
  35. P. Lee, W. R. Gao, and X. L. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt.49(18), 3538–3544 (2010). [CrossRef] [PubMed]
  36. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12(19), 4353–4365 (2004). [CrossRef] [PubMed]
  37. Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt.16(9), 090504 (2011). [CrossRef] [PubMed]
  38. Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express3(7), 1548–1556 (2012). [CrossRef] [PubMed]
  39. Y. Yang, T. Wang, M. Brewer, and Q. Zhu, “Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography,” J. Biomed. Opt.17(9), 090530 (2012). [CrossRef] [PubMed]
  40. H. J. Wei, G. Wu, Z. Guo, H. Yang, Y. He, S. Xie, and X. Guo, “Assessment of the effects of ultrasound-mediated glucose on permeability of normal, benign, and cancerous human lung tissues with the Fourier-domain optical coherence tomography,” J. Biomed. Opt.17(11), 116006 (2012). [CrossRef] [PubMed]
  41. R. V. Kuranov, V. V. Sapozhnikova, D. S. Prough, I. Cicenaite, and R. O. Esenaliev, “Prediction capability of optical coherence tomography for blood glucose concentration monitoring,” J. Diabetes Sci. Tech.1(4), 470–477 (2007). [CrossRef]
  42. D. A. Southgate, “Digestion and metabolism of sugars,” Am. J. Clin. Nutr.62(1Suppl), 203S–210S(1995). [PubMed]
  43. P. A. Mayes, “Intermediary metabolism of fructose,” Am. J. Clin. Nutr.58(5Suppl), 754S–765S (1993). [PubMed]
  44. F. Q. Nuttal, M. A. Khan, and M. C. Gannon, “Peripheral glucose appearance rate following fructose ingestion in normal subjects,” Metabolism49(12), 1565–1571 (2000). [CrossRef] [PubMed]
  45. J. P. Bantle, D. C. Laine, G. W. Castle, J. W. Thomas, B. J. Hoogwerf, and F. C. Goetz, “Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects,” N. Engl. J. Med.309(1), 7–12 (1983). [CrossRef] [PubMed]
  46. K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol.48(10), 1371–1390 (2003). [CrossRef] [PubMed]
  47. V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, “Determination of the scattering anisotropy with optical coherence tomography,” Opt. Express19(7), 6131–6140 (2011). [CrossRef] [PubMed]
  48. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express12(2), 249–259 (2004). [CrossRef] [PubMed]
  49. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresenel principle,” J. Opt. Soc. Am. A17(3), 484–490 (2000). [CrossRef]
  50. O. Zhernovaya, V. V. Tuchin, and M. J. Leahy, “Blood optical clearing studied by optical coherence tomography,” J. Biomed. Opt.18(2), 026014 (2013). [CrossRef] [PubMed]
  51. J. V. Bjørnholt, G. Erikssen, E. Aaser, L. Sandvik, S. Nitter-Hauge, J. Jervell, J. Erikssen, and E. Thaulow, “Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men,” Diabetes Care22(1), 45–49 (1999). [CrossRef] [PubMed]
  52. G. McGarraugh, D. Price, S. Schwartz, and R. Weinstein, “Physiological influences on off-finger glucose testing,” Diabetes Technol. Ther.3(3), 367–376 (2001). [CrossRef] [PubMed]
  53. G. M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, and M. F. Saad, “Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor,” Diabetes Technol. Ther.5(1), 27–31 (2003). [CrossRef] [PubMed]
  54. A. J. M. Schoonen and K. J. C. Wientjes, “A model for transport of glucose in adipose tissue to a microdialysis probe,” Diabetes Technol. Ther.5(4), 589–598 (2003). [CrossRef] [PubMed]
  55. K. Jungheim and T. Koschinsky, “Glucose Monitoring at the Arm: Risky delays of hypoglycemia and hyperglycemia detection,” Diabetes Care25(6), 956–960 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited