OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1336–1354

Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits

N. A. Carbone, G. R. Baez, H. A. García, M. V. Waks Serra, H. O. Di Rocco, D. I. Iriarte, J. A. Pomarico, D. Grosenick, and R. Macdonald  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1336-1354 (2014)
http://dx.doi.org/10.1364/BOE.5.001336


View Full Text Article

Enhanced HTML    Acrobat PDF (1884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach.

© 2014 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: November 25, 2013
Revised Manuscript: February 6, 2014
Manuscript Accepted: February 21, 2014
Published: April 2, 2014

Citation
N. A. Carbone, G. R. Baez, H. A. García, M. V. Waks Serra, H. O. Di Rocco, D. I. Iriarte, J. A. Pomarico, D. Grosenick, and R. Macdonald, "Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits," Biomed. Opt. Express 5, 1336-1354 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1336


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008). [CrossRef] [PubMed]
  2. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys.32(4), 1128–1139 (2005). [CrossRef] [PubMed]
  3. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006). [CrossRef] [PubMed]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43, (2005). [CrossRef] [PubMed]
  5. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004). [CrossRef] [PubMed]
  6. D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, and P. Schlag., “Development of a time-domain Optical mammograph and first in vivo applications,” Appl. Opt.38(13), 2927–2943 (1999). [CrossRef]
  7. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L Barbour., “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt.44(11), 2140–2153 (2005). [CrossRef] [PubMed]
  8. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, “Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies,” J. Biomed. Opt.10(2), 024027 (2005). [CrossRef] [PubMed]
  9. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004). [CrossRef] [PubMed]
  10. J. D. Riley, F. Amyot, T. Pohida, R. Pursley, Y. Ardeshirpour, J. M. Kainerstorfer, L. Najafizadeh, V. Chernomordik, P. Smith, J. Smirniotopoulos, E. M. Wassermann, and A. H. Gandjbakhche., “A hematoma detector -a practical application of instrumental motion as signal in near infra - red imaging,” Biomed. Opt. Express3(1), 192–205 (2012). [CrossRef] [PubMed]
  11. E. M. Hillman., “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007). [CrossRef] [PubMed]
  12. D. Grosenick, A. Hagen, O. Steinkellner, A. Poellinger, S. Burock, P. Schlag, H. Rinneberg, and R. Macdonald., “A multichannel time-domain scanning fluorescence mammograph: performance assessment and first in vivo results,” Rev. Sci. Instrum.82, 024302 (2011). [CrossRef] [PubMed]
  13. V. Nziachristos, X. Ma, and B. Chance., “Time correlated single photon counting imager for simultaneous magnetic resonance and near infrared mammography,” Rev. Sci. Instrum.69, 4221–4233 (1998). [CrossRef]
  14. T. O’ Sullivan, A. Cerussi, D. Cuccia, and B. Tromberg, “Diffuse optical imaging using spatially and temporally modulated light,” J. Biomed. Opt.17(7), 071311 (2012).
  15. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt.14(3), 034045 (2009). [CrossRef] [PubMed]
  16. A. Bassi, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg., “Spatial shift of spatially modulated light projected on turbid media,” J. Opt. Soc. Am. A25(11), 2833–2839 (2008). [CrossRef]
  17. S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt.16(8), 086015 (2011). [CrossRef] [PubMed]
  18. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015 (2011). [CrossRef] [PubMed]
  19. T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. Schlag, H. Rinneberg, and S. Arridge, “Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data,” Phys. Med. Biol.50(11), 2519–2542 (2005). [CrossRef] [PubMed]
  20. J. Liu, A. Li, A. E. Cerussi, and B. J. Tromberg., “Parametric diffuse optical imaging in reflectance geometry,” IEEE J. Sel. Topics Quantum Electron16(3), 555–564 (2010). [CrossRef]
  21. B. Tavakoli and Q. Zhu., “Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography,” J. Biomed. Opt.18(1), 16006 (2013). [CrossRef]
  22. M. Born and E. Wolf, Principles of optics (Cambridge Unversity Press, 1999). [CrossRef]
  23. N. Carbone, H. Di Rocco, D. Iriarte, and J. Pomarico., “Solution of the direct problem in turbid media with inclusions using Monte Carlo simulations implemented on graphics processing units: new criterion for processing transmittance data,” J. Biomed. Opt.15(3), 035002 (2010). [CrossRef]
  24. H. Di Rocco, D. Iriarte, M. Lester, J. Pomarico, and H. F. Ranea-Sandoval., “CW Laser transilluminance in turbid media with cylindrical inclusions,” Int. J. Light Electron Opt.122, 577–581 (2011). [CrossRef]
  25. X. D. Li, M. A. OLeary, D. A. Boas, B. Chance, and A. G. Yodh., “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt.35(19), 3746–3758 (1996). [CrossRef] [PubMed]
  26. D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg., “Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E76(6), 061908 (2007). [CrossRef]
  27. A. Ishimaru, Wave propagation and scattering in Random Media (Oxford University Press, 1997).
  28. X. D. Zhu, S. Wei, S. C. Feng, and B. Chance, “Analysis of a diffuse-photon-density wave in multilpe-scattering media in the presence of a small spherical object,” J. Opt. Soc. Am. A23(3), 494–499 (1996). [CrossRef]
  29. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.38(19), 4587–4599 (1997) [CrossRef]
  30. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11(10), 2727–2741 (1994). [CrossRef]
  31. S. Feng, Fan-An Zeng, and B. Chance., “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt.34, 3826–3837 (1995). [CrossRef] [PubMed]
  32. E. B. Aksel, A. N. Turkoglu, A. E. Ercan, and A. Akin., “Localization of an absorber in turbid semi - infinite medium by spatially resolved continuous - wave diffuse reflectance measurements,” J. Biomed. Opt.16(8), 086010 (2011). [CrossRef] [PubMed]
  33. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett.23, 882–884 (1998). [CrossRef]
  34. J. Ripoll Lorenzo, “Difusión de luz en medios turbios con aplicación biomédica,”, Ph.D. Thesis, Universidad Autónoma de Madrid, Spain, (2000).
  35. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt.36, 180–213 (1997). [CrossRef] [PubMed]
  36. R. Ziegler, B. Brendel, A. Schiper, R. Harbers, M. van Beek, H. Rinneberg, and T. Nielsen., “Investigation of detection limits for diffuse optical tomography systems: I. Theory and experiment,” Phys. Med. Biol.54, 399–412 (2009). [CrossRef]
  37. S. M. Kay, “Fundamental of Statistical Signal Processing - Detection Theory,”, Prentice Hall Signal Processing Series, (1993).
  38. A. Hagen, O. Steinkellner, D. Grosenick, M. Möller, R. Ziegler, T. Nielsen, K. Lauritzen, R. Macdonald, and H. Rinneberg., “Development of a multi-channel time-domain fluorescence Mammograph,” Proc. SPIE6434, 64340Z (2007). [CrossRef]
  39. S. Schieck., “Preparation and characterization of structured tissue - like phantoms for biomedical optics,” Diploma Thesis, Berlin, (2005) (In German).
  40. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu., “In vivo optical characterization of human tissue from 610 to 1010 nm by time resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001). [CrossRef] [PubMed]
  41. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, 2003). [CrossRef]
  42. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg., “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50, 2451–2468 (2005). [CrossRef] [PubMed]
  43. X. Intes, J. Ripoll, Yu Chen, S. Nioka., A.G. Yodh, and B. Chance., “In vivo continuous-wave optical breast imaging enhanced with indocyanine green,” Med. Phys., 30(6) 1039–1047, (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited