OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1355–1362

Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy

V. Hovhannisyan, H. W. Guo, A. Hovhannisyan, V. Ghukasyan, T. Buryakina, Y. F. Chen, and C. Y. Dong  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1355-1362 (2014)
http://dx.doi.org/10.1364/BOE.5.001355


View Full Text Article

Enhanced HTML    Acrobat PDF (2150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin–mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: December 24, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: January 20, 2014
Published: April 2, 2014

Citation
V. Hovhannisyan, H. W. Guo, A. Hovhannisyan, V. Ghukasyan, T. Buryakina, Y. F. Chen, and C. Y. Dong, "Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy," Biomed. Opt. Express 5, 1355-1362 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1355


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Carpenter and G. A. Kraus, “Photosensitization is required for inactivation of equine infectious anemia virus by hypericin,” Photochem. Photobiol.53(2), 169–174 (1991). [CrossRef] [PubMed]
  2. D. Meruelo, G. Lavie, and D. Lavie, “Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin,” Proc. Natl. Acad. Sci. U.S.A.85(14), 5230–5234 (1988). [CrossRef] [PubMed]
  3. N. D. Weber, B. K. Murray, J. A. North, and S. G. Wood, “The antiviral agent hypericin has in vitro activity against HSV-1 through non-specific association with viral and cellular membranes,” AntiViral Chem. Chemother.5(2), 83–90 (1994).
  4. H. Koren, G. M. Schenk, R. H. Jindra, G. Alth, R. Ebermann, A. Kubin, G. Koderhold, and M. Kreitner, “Hypericin in phototherapy,” J. Photochem. Photobiol. B36(2), 113–119 (1996). [CrossRef] [PubMed]
  5. L. M. Davids, B. Kleemann, D. Kacerovská, K. Pizinger, and S. H. Kidson, “Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells,” J. Photochem. Photobiol. B91(2-3), 67–76 (2008). [CrossRef] [PubMed]
  6. J. M. Fernandez, M. D. Bilgin, and L. I. Grossweiner, “Singlet oxygen generation by photodynamic agents,” J. Photochem. Photobiol. B37(1–2), 131–140 (1997). [CrossRef]
  7. D. S. English, K. Das, K. D. Ashby, J. Park, J. W. Petrich, and E. W. Castner, “Confirmation of excited-state proton transfer and ground-state heterogeneity in hypericin by fluorescence upconversion,” J. Am. Chem. Soc.119(48), 11585–11590 (1997). [CrossRef]
  8. T. A. Wells, A. Losi, R. Dai, P. Scott, S. M. Park, J. Golbeck, and P. S. Song, “Electron transfer quenching and photoinduced EPR of hypericin and the ciliate photoreceptor stentorian,” J. Phys. Chem. A101(4), 366–372 (1997). [CrossRef]
  9. G. Seitz, R. Krause, J. Fuchs, H. Heitmann, S. Armeanu, P. Ruck, and S. W. Warmann, “In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin,” Oncol. Rep.20(5), 1277–1282 (2008). [PubMed]
  10. W. T. Couldwell, A. A. Surnock, A. J. Tobia, B. E. Cabana, C. B. Stillerman, P. A. Forsyth, A. J. Appley, A. M. Spence, D. R. Hinton, and T. C. Chen, “A phase 1/2 study of orally administered synthetic hypericin for treatment of recurrent malignant gliomas,” Cancer117(21), 4905–4915 (2011). [CrossRef] [PubMed]
  11. D. Yova, V. Hovhannisyan, and T. Theodossiou, “Photochemical effects and hypericin photosensitized processes in collagen,” J. Biomed. Opt.6(1), 52–57 (2001). [CrossRef] [PubMed]
  12. A. L. Maas, S. L. Carter, E. P. Wileyto, J. Miller, M. Yuan, G. Yu, A. C. Durham, and T. M. Busch, “Tumor vascular microenvironment determines responsiveness to photodynamic therapy,” Cancer Res.72(8), 2079–2088 (2012). [CrossRef] [PubMed]
  13. Y. Shintani, M. Maeda, N. Chaika, K. R. Johnson, and M. J. Wheelock, “Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-β signaling,” Am. J. Respir. Cell Mol. Biol.38(1), 95–104 (2008). [CrossRef] [PubMed]
  14. S. Fine and W. P. Hansen, “Optical second harmonic generation in biological systems,” Appl. Opt.10(10), 2350–2353 (1971). [CrossRef] [PubMed]
  15. T. Hayashi, “Time-dependent increase in the stability of collagen fibrils formed in vitro. I. Effects of pH and salt concentration on the dissolution of the fibrils,” J. Biochem.84(2), 245–249 (1978). [PubMed]
  16. S. J. Lin, C. Y. Hsiao, Y. Sun, W. Lo, W. C. Lin, G. J. Jan, S. H. Jee, and C. Y. Dong, “Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy,” Opt. Lett.30(6), 622–624 (2005). [CrossRef] [PubMed]
  17. V. A. Hovhannisyan, P. J. Su, S. J. Lin, and C.-Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett.94(23), 233902 (2009). [CrossRef]
  18. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express16(11), 7958–7968 (2008). [CrossRef] [PubMed]
  19. E. J. Gualda, J. R. Vázquez de Aldana, M. C. Martínez-García, P. Moreno, J. Hernández-Toro, L. Roso, P. Artal, and J. M. Bueno, “Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas,” Biomed. Opt. Express2(11), 2950–2960 (2011). [CrossRef] [PubMed]
  20. M. Bueeler, E. Spoerl, T. Seiler, and M. Mrochen, “UV collagen cross-linking of the cornea: safety aspects and design of a UV illumination system,” in Proc. SPIE 6844, Ophthalmic Technologies XVIII (2008), p. 68440Z.
  21. C. Thrasivoulou, G. Virich, T. Krenacs, I. Korom, and D. L. Becker, “Optical delineation of human malignant melanoma using second harmonic imaging of collagen,” Biomed. Opt. Express2(5), 1282–1295 (2011). [CrossRef] [PubMed]
  22. R. Ambekar, T. Y. Lau, M. Walsh, R. Bhargava, and K. C. Toussaint., “Quantifying collagen structure in breast biopsies using second-harmonic generation imaging,” Biomed. Opt. Express3(9), 2021–2035 (2012). [CrossRef] [PubMed]
  23. T. Lv, Z. F. Huang, H. W. Wang, J. Q. Lin, G. N. Chen, X. W. Chen, R. Chen, Z. Huang, and X. L. Wang, “Evaluation of collagen alteration after topical photodynamic therapy (PDT) using second harmonic generation (SHG) microscopy--in vivo study in a mouse model,” Photodiagn. Photodyn. Ther.9(2), 164–169 (2012). [CrossRef] [PubMed]
  24. D. Fujimoto, K. Akiba, and N. Nakamura, “Isolation and characterization of a fluorescent material in bovine Achilles tendon collagen,” Biochem. Biophys. Res. Commun.76(4), 1124–1129 (1977). [CrossRef] [PubMed]
  25. I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res.62(3), 682–687 (2002). [PubMed]
  26. W. G. Liu, K. D. Yao, G. C. Wang, and H. X. Li, “Intrinsic fluorescence investigation on the change in conformation of cross-linked gelatin gel during volume phase transition,” Polymer (Guildf.)41(20), 7589–7592 (2000). [CrossRef]
  27. P. Pande, B. E. Applegate, and J. A. Jo, “Application of non-negative matrix factorization to multispectral FLIM data analysis,” Biomed. Opt. Express3(9), 2244–2262 (2012). [CrossRef] [PubMed]
  28. B. S. P. Miskovsky, “Hypericin--a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules,” Curr. Drug Targets3(1), 55–84 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited