OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1363–1377

Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography

Jaya Prakash, Aditi Subramani Raju, Calvin B. Shaw, Manojit Pramanik, and Phaneendra K. Yalavarthy  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1363-1377 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The model-based image reconstruction approaches in photoacoustic tomography have a distinct advantage compared to traditional analytical methods for cases where limited data is available. These methods typically deploy Tikhonov based regularization scheme to reconstruct the initial pressure from the boundary acoustic data. The model-resolution for these cases represents the blur induced by the regularization scheme. A method that utilizes this blurring model and performs the basis pursuit deconvolution to improve the quantitative accuracy of the reconstructed photoacoustic image is proposed and shown to be superior compared to other traditional methods via three numerical experiments. Moreover, this deconvolution including the building of an approximate blur matrix is achieved via the Lanczos bidagonalization (least-squares QR) making this approach attractive in real-time.

© 2014 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: January 6, 2014
Revised Manuscript: February 18, 2014
Manuscript Accepted: March 17, 2014
Published: April 2, 2014

Jaya Prakash, Aditi Subramani Raju, Calvin B. Shaw, Manojit Pramanik, and Phaneendra K. Yalavarthy, "Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography," Biomed. Opt. Express 5, 1363-1377 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. E Gusev and A. A Karabutov, Laser Optoacoustics (AIP, 1993).
  2. A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, “Optoacoustic tomography: New modality of laser diagnostic systems,” Laser Phys.13, 711–723 (2003).
  3. L. H. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science335, 1458–1462, (2012). [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotech.24, 848–851 (2006). [CrossRef]
  5. B. Yin, D. Xing, Y. Wang, Y. Zeng, Y. Tan, and Q. Chen, “Fast photoacoustic imaging system based on 320-element linear transducer array,” Phys. Med. Bio.49, 1339–1346 (2004). [CrossRef]
  6. G. Ku and L. H. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys.27, 1195–1202 (2000). [CrossRef] [PubMed]
  7. M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys.35, 2218–2223 (2008). [CrossRef] [PubMed]
  8. M. Pramanik and L. H. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14, 054024 (2009). [CrossRef] [PubMed]
  9. K. H. Song and L. H. V. Wang, “Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals,” Med. Phys.35, 4524–4529 (2008). [CrossRef] [PubMed]
  10. Y. Wang, X. Y. Xie, X. D. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. H. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett.4, 1689–1692 (2004). [CrossRef]
  11. A. De la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Y. Chen, H. J. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotech.3, 557–562 (2008). [CrossRef]
  12. P. Kuchment and L. Kunyansky, “Mathematics of thermoacoustic and photoacoustic tomography,” European J. App. Math.19, 191–224 (2008).
  13. M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Review E71, 016706 (2005). [CrossRef]
  14. K. P. Kostli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier transform image reconstruction and a detector with an anisotropic response,” App. Opt.42, 1899–1908 (2003). [CrossRef]
  15. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt.13, 054052 (2008). [CrossRef] [PubMed]
  16. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imag.24, 199–210 (2005). [CrossRef]
  17. K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Bio.57, 5399–5423 (2012). [CrossRef]
  18. C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography with Acoustically Inhomogeneous Media,” IEEE Trans. Med. Imag.32, 1097–1110 (2013). [CrossRef]
  19. X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of Optoacoustic Model-Based Reconstruction Using Angular Image Discretization,” IEEE Trans. Med. Imag.31, 1154–1162 (2012). [CrossRef]
  20. X. L. Dean-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imag.31, 1922–1928 (2012). [CrossRef]
  21. A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys.38, 1694–1704 (2011). [CrossRef] [PubMed]
  22. C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least Squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt.18, 080501:1–3 (2013).
  23. J. Prakash and P. K. Yalavarthy, “A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography,” Med. Phys.40, 033101 (2013). [CrossRef] [PubMed]
  24. J. A. Fessler and W. L. Rogers, “Spatial resolution properties of penalized- likelihood image reconstruction methods: Space-invariant tomographs,” IEEE Trans. Image Process.5, 1346–1358 (1996). [CrossRef]
  25. J. Prakash, H. Dehghani, B. W. Pogue, and P. K. Yalavarthy, “Model-Resolution based Basis Pursuit Deconvolution Improves Diffuse Optical Tomographic Imaging,” IEEE Trans. Med. Imag. 2014 (in press). [CrossRef]
  26. J. Chen, R. Lin, H. Wang, J. Meng, H. Zheng, and L. Song, “Blind-deconvolution optical-resolution photoacoustic microscopy in vivo,” Opt. Express21, 7316–7327 (2013). [CrossRef] [PubMed]
  27. B. R. Hunt, “The application of constrained least square estimation to image restoration by digital computer,” IEEE Trans. Comput.C-22, 805–812 (1973). [CrossRef]
  28. E. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag.25, 21–30 (2008). [CrossRef]
  29. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag.25, 14–20 (2008). [CrossRef]
  30. J. Provost and F. Lesage, “The application of compressed sensing for photo-acoustic tomography,” IEEE Trans. Med. Imag.28, 585–594 (2009). [CrossRef]
  31. Z. Guo, C. H. Li, L. Song, and L. H. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt.15, 021311 (2010). [CrossRef] [PubMed]
  32. M. Figueiredo, J. Bioucas-Dias, and M. Afonso, “Fast Frame-Based Image Deconvolution Using Variable Splitting and Constrained Optimization,” IEEE Worskhop on Statistical Signal Processing, Cardiff, Wales, 2009.
  33. I. Selesnick, “Introduction to Sparsity in Signal Processing [Connexions Web site],” Available at: http://cnx.org/content/m43545/1.3/ . (2012).
  34. Y. Hristova, P. Kuchment, and L. V. Nguyen, “Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,” Inv. Problems24, 055006 (2008). [CrossRef]
  35. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt.15, 021314 (2010). [CrossRef] [PubMed]
  36. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acous. Soc. Am.112, 1536–1544 (2002). [CrossRef]
  37. C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Software8, 43–71 (1982). [CrossRef]
  38. M. E. Kilmer and D. P. OLeary, “Choosing regularization parameters in iterative methods for ill-posed problems,” SIAM J. Matrix Anal. Appl.22, 1204–1221 (2001). [CrossRef]
  39. P. C. Hansen, “Regularization tools version 4.0 for Matlab 7.3,” Numerical Algorithms46, 189–194 (2007). [CrossRef]
  40. P. C. Hansen, J. G. Nagy, and D. P. O. Leary, Deblurring Images: Matrices, Spectra, and Filtering, 1 (SIAM, Philadelphia, 2006). [CrossRef]
  41. M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast Image Recovery Using Variable Splitting and Constrained Optimization,” IEEE Trans. Image Process.19, 2345–2356 (2010). [CrossRef] [PubMed]
  42. J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, “Sparse Recovery Methods Hold Promise for Diffuse Optical Tomographic Image Reconstruction,” IEEE J. Sel. Top. Quantum Electron.20, 6800609 (2014). [CrossRef]
  43. N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A30, 1994–2001 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited