OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1403–1418

Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application

Chunhui Li, Guangying Guan, Fan Zhang, Ghulam Nabi, Ruikang K. Wang, and Zhihong Huang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1403-1418 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mechanical properties are important parameters that can be used to assess the physiologic conditions of biologic tissue. Measurements and mapping of tissue mechanical properties can aid in the diagnosis, characterisation and treatment of diseases. As a non-invasive, non-destructive and non-contact method, laser induced surface acoustic waves (SAWs) have potential to accurately characterise tissue elastic properties. However, challenge still exists when the laser is directly applied to the tissue because of potential heat generation due to laser energy deposition. This paper focuses on the thermal effect of the laser induced SAW on the tissue target and provides an alternate solution to facilitate its application in clinic environment. The solution proposed is to apply a thin agar membrane as surface shield to protect the tissue. Transient thermal analysis is developed and verified by experiments to study the effects of the high energy Nd:YAG laser pulse on the surface shield. The approach is then verified by measuring the mechanical property of skin in a Thiel mouse model. The results demonstrate a useful step toward the practical application of laser induced SAW method for measuring real elasticity of normal and diseased tissues in dermatology and other surface epithelia.

© 2014 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(350.5030) Other areas of optics : Phase
(280.3375) Remote sensing and sensors : Laser induced ultrasonics

ToC Category:
Optical Coherence Tomography

Original Manuscript: February 5, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 25, 2014
Published: April 3, 2014

Chunhui Li, Guangying Guan, Fan Zhang, Ghulam Nabi, Ruikang K. Wang, and Zhihong Huang, "Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application," Biomed. Opt. Express 5, 1403-1418 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. R. Tilleman, M. M. Tilleman, and M. H. Neumann, “The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus,” Isr. Med. Assoc. J.6(12), 753–755 (2004). [PubMed]
  2. X. Zhang, R. R. Kinnick, Pittelkow, and M. R. J. F. Greenleaf, 2008Skin viscoelasticity with surface wave method, 2008 IEEE International Ultrasonics Symposium Proceedings.
  3. Nakajima M., Kiyohara Y., Shimizu M. and Kobayashi M. 2007 “Clinical application of real-time tissue elastography on skin lesions”, MEDIX Suppl., 36–39.
  4. J. D. Krehbiel, J. Lambros, J. A. Viator, and N. R. Sottos, 2008 “Digital Image Correlation for Improved Detection of Basal Cell Carcinoma”, Proceedings of the XIth nternational Congress and Exposition.
  5. Melanoma skin cancer,” American Cancer Society, http://www.cancer.org/acs/groups/cid/documents/webcontent/003120-pdf , (2011)
  6. Skin cancer,” American Cancer Society, http://www.cancer.org/acs/groups/content/@nho/documents/document/skincancerpdf.pdf , (2007)
  7. P. Ciarletta, L. Foret, and M. Ben Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” J. R. Soc. Interface8(56), 345–368 (2011). [CrossRef] [PubMed]
  8. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  9. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005). [CrossRef]
  10. C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011), doi:. [CrossRef] [PubMed]
  11. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  12. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004). [CrossRef] [PubMed]
  13. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004). [CrossRef] [PubMed]
  14. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006). [CrossRef] [PubMed]
  15. R. K. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006). [CrossRef]
  16. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  17. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  18. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007). [CrossRef]
  19. B.F. Kennedy, K.M. Kennedy, and D.D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014).
  20. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: A preliminary study,” J. Biomed. Opt.15(5), 056005 (2010). [CrossRef] [PubMed]
  21. S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Imaging of tissue shear modulus by direct visualization of propagating acoustic waves with phase sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013). [CrossRef] [PubMed]
  22. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: Motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013). [CrossRef] [PubMed]
  23. T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014). [CrossRef] [PubMed]
  24. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  25. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011). [CrossRef] [PubMed]
  26. G. Guan, C. Li, Y. Ling, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. H. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,”J. Biomed. Opt.18(11), 111417 (2013).
  27. C. H. Li, Z. H. Huang, and R. K. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011). [CrossRef] [PubMed]
  28. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012). [CrossRef] [PubMed]
  29. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012). [CrossRef] [PubMed]
  30. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012). [CrossRef] [PubMed]
  31. C. Li, G. Guan, S. Li, Z. Huang, and R. K. Wang, “Evaluating elastic properties of heterogeneous soft tissue by surface acoustic waves detected by phase-sensitive optical coherence tomography,” J. Biomed. Opt.17(5), 057002 (2012). [CrossRef] [PubMed]
  32. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger Press, Bristol 1990).
  33. D. H. Hurley and J. B. Spicer, “Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space,” J. Acoust. Soc. Am.116(5), 2914–2922 (2004). [CrossRef]
  34. P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics34(1), 1–8 (1996). [CrossRef]
  35. S. Kenderian, B. B. Djordjevic, and R. E. Green., “Point and Line Source Laser Generation of Ultrasound for Inspection of Internal and Surface Flaws in Rail and Structural Materials,” Res. Nondestruct. Eval.13(4), 189–200 (2001). [CrossRef]
  36. American National Standard Institute, Safety of laser products – Part 1: Equipment classification, requirements and user's guide, IEC 60825–1, Edition 1.2 (2001–08).
  37. W. Sun, Y. Peng, and J. Xu, “A de-noising method for laser ultrasonic signal based on EMD,” J. Sandong Univ.38, 1–6 (2008).
  38. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express17(15), 592– 607 (2009).
  39. K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express20(17), 18887–18897 (2012). [CrossRef] [PubMed]
  40. D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films332(1-2), 157–163 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited