OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1419–1427

Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking

Michael D. Twa, Jiasong Li, Srilatha Vantipalli, Manmohan Singh, Salavat Aglyamov, Stanislav Emelianov, and Kirill V. Larin  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1419-1427 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5023 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Corneal collagen cross-linking (CXL) is a clinical treatment for keratoconus that structurally reinforces degenerating ocular tissue, thereby limiting disease progression. Clinical outcomes would benefit from noninvasive methods to assess tissue material properties in affected individuals. Regional variations in tissue properties were quantified before and after CXL in rabbit eyes using optical coherence elastography (OCE) imaging. Low-amplitude (<1µm) elastic waves were generated using micro air-pulse stimulation and the resulting wave amplitude and speed were measured using phase-stabilized swept-source OCE. OCE imaging following CXL treatment demonstrates increased corneal stiffness through faster elastic wave propagation speeds and lower wave amplitudes.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

Original Manuscript: January 17, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 31, 2014
Published: April 4, 2014

Michael D. Twa, Jiasong Li, Srilatha Vantipalli, Manmohan Singh, Salavat Aglyamov, Stanislav Emelianov, and Kirill V. Larin, "Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking," Biomed. Opt. Express 5, 1419-1427 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An Overview of Elastography - an Emerging Branch of Medical Imaging,” Curr. Med. Imaging Rev.7(4), 255–282 (2011). [CrossRef] [PubMed]
  2. T. B. Edrington, K. Zadnik, and J. T. Barr, “Keratoconus,” Optom. Clin.4(3), 65–73 (1995). [PubMed]
  3. M. D. Twa, J. J. Nichols, C. E. Joslin, P. S. Kollbaum, T. B. Edrington, M. A. Bullimore, G. L. Mitchell, K. J. Cruickshanks, and D. J. Schanzlin, “Characteristics of corneal ectasia after LASIK for myopia,” Cornea23(5), 447–457 (2004). [CrossRef] [PubMed]
  4. K. Zadnik, J. T. Barr, T. B. Edrington, D. F. Everett, M. Jameson, T. T. McMahon, J. A. Shin, J. L. Sterling, H. Wagner, and M. O. Gordon, “Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study,” Invest. Ophthalmol. Vis. Sci.39(13), 2537–2546 (1998). [PubMed]
  5. H. Latorre-Ossa, J. L. Gennisson, E. De Brosses, and M. Tanter, “Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control59(4), 833–839 (2012). [CrossRef] [PubMed]
  6. D. Touboul, J. L. Gennisson, T. M. Nguyen, A. Robinet, C. J. Roberts, M. Tanter, and N. Grenier, “Supersonic shear wave elastography for the in vivo evaluation of trans-epithelial corneal collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.55(3), 1976–1984 (2014). [CrossRef] [PubMed]
  7. J. D. Kovač, M. Daković, D. Stanisavljević, T. Alempijević, R. Ješić, P. Seferović, and R. Maksimović, “Diffusion-weighted MRI versus transient elastography in quantification of liver fibrosis in patients with chronic cholestatic liver diseases,” Eur. J. Radiol.81(10), 2500–2506 (2012). [CrossRef] [PubMed]
  8. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci.53(1), 185–190 (2012). [CrossRef] [PubMed]
  9. B. F. Kennedy, M. Wojtkowski, M. Szkulmowski, K. M. Kennedy, K. Karnowski, and D. D. Sampson, “Improved measurement of vibration amplitude in dynamic optical coherence elastography,” Biomed. Opt. Express3(12), 3138–3152 (2012). [CrossRef] [PubMed]
  10. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012). [CrossRef] [PubMed]
  11. M. Razani, A. Mariampillai, C. Sun, T. W. Luk, V. X. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012). [CrossRef] [PubMed]
  12. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  13. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012). [CrossRef] [PubMed]
  14. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  15. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005 (2011). [CrossRef] [PubMed]
  16. R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011). [CrossRef]
  17. H. Wang, P. L. Prendiville, P. J. McDonnell, and W. V. Chang, “An ultrasonic technique for the measurement of the elastic moduli of human cornea,” J. Biomech.29(12), 1633–1636 (1996). [CrossRef] [PubMed]
  18. S. A. Greenstein, K. L. Fry, and P. S. Hersh, “In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial,” Cornea31(1), 21–25 (2012). [CrossRef] [PubMed]
  19. Y. Hon and A. K. Lam, “Corneal deformation measurement using Scheimpflug noncontact tonometry,” Optom. Vis. Sci.90(1), e1–e8 (2013). [CrossRef] [PubMed]
  20. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system,” Opt. Express19(15), 14188–14199 (2011). [CrossRef] [PubMed]
  21. C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express3(3), 473–487 (2012). [CrossRef] [PubMed]
  22. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013). [CrossRef]
  23. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012). [CrossRef] [PubMed]
  24. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” LaPhy18, 1080–1086 (2008).
  25. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo,” J. Biomed. Opt.18(12), 121503 (2013). [CrossRef] [PubMed]
  26. M. Hovakimyan, R. Guthoff, S. Knappe, A. Zhivov, A. Wree, A. Krüger, A. Heisterkamp, and O. Stachs, “Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology,” Cornea30(2), 196–203 (2011). [CrossRef] [PubMed]
  27. S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010). [CrossRef] [PubMed]
  28. S. Schumacher, L. Oeftiger, and M. Mrochen, “Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation,” Invest. Ophthalmol. Vis. Sci.52(12), 9048–9052 (2011). [CrossRef] [PubMed]
  29. G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003). [CrossRef] [PubMed]
  30. S. Kling, H. Ginis, and S. Marcos, “Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking,” Invest. Ophthalmol. Vis. Sci.53(8), 5010–5015 (2012). [CrossRef] [PubMed]
  31. A. Sinha Roy, K. M. Rocha, J. B. Randleman, R. D. Stulting, and W. J. Dupps., “Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus,” Exp. Eye Res.113, 92–104 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited