OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1453–1464

Optical architecture design for detection of absorbers embedded in visceral fat

Robert Francis, James Florence, and Duncan MacFarlane  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1453-1464 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (7549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Diffuse Optical Imaging

Original Manuscript: November 20, 2013
Revised Manuscript: March 17, 2014
Manuscript Accepted: March 27, 2014
Published: April 9, 2014

Robert Francis, James Florence, and Duncan MacFarlane, "Optical architecture design for detection of absorbers embedded in visceral fat," Biomed. Opt. Express 5, 1453-1464 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. B. Ou, S. W. Li, C. A. Liu, B. Tu, C. X. Wu, X. Ding, Z. J. Liu, K. Sun, H. Y. Feng, and J. P. Gong, “Prevention of common bile duct injury during laparoscopic cholecystectomy,” HBPD INT8(4), 414–417 (2009). [PubMed]
  2. H. Akbari, Y. Kosugi, and Z. Khorgami, “Image-guided preparation of the calot's triangle in laparoscopic cholecystectomy,” in Proceedings of EMBS EMBC Annual International Conference of the IEEE (2009). [CrossRef]
  3. S. J. Savader, K. D. Lillemoe, C. A. Prescott, A. B. Winick, A. C. Venbrux, G. B. Lund, S. E. Mitchell, J. L. Cameron, and F. A. Osterman., “Laparoscopic cholecystectomy-related bile duct injuries: A health and financial disaster,” Ann. Surg.225(3), 268–273 (1997). [CrossRef] [PubMed]
  4. A. R. Moossa, D. W. Easter, E. Van Sonnenberg, G. Casola, and H. D’Agostino, “Laparoscopic injuries to the bile duct. A cause for concern,” Ann. Surg.215(3), 203–208 (1992). [CrossRef] [PubMed]
  5. M. T. Perera, M. A. Silva, A. J. Shah, R. Hardstaff, S. R. Bramhall, J. Issac, J. A. Buckels, and D. F. Mirza, “Risk factors for litigation following major transectional bile duct injury sustained at laparoscopic cholecystectomy,” World J. Surg.34(11), 2635–2641 (2010). [CrossRef] [PubMed]
  6. A. C. Medeiros, I. Araújo-Filho, M. D. F. Carvalho, M. de Paiva, V. F. Lima, I. M. de Azevedo, and A. M. Dantas Filho, “Laparoscopic versus open cholecystectomy: Complications and cost,” J. Surg. Clin. Res.3, 49–58 (2013).
  7. O. J. Garden, “Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy,” Br. J. Surg.97(9), 1378 (2010). [CrossRef] [PubMed]
  8. F. Xu, C. G. Xu, and D. Z. Xu, “A new method of preventing bile duct injury in laparoscopic cholecystectomy,” World J. Gastroenterol.10(19), 2916–2918 (2004). [PubMed]
  9. N. Sato, K. Shibao, Y. Akiyama, Y. Inoue, Y. Mori, N. Minagawa, A. Higure, and K. Yamaguchi, “Routine intraoperative cholangiography during single-incision laparoscopic cholecystectomy: A review of 196 consecutive patients,” J. Gastrointest. Surg.17(4), 668–674 (2013). [CrossRef] [PubMed]
  10. M. A. Stott, P. A. Farrands, P. B. Guyer, K. C. Dewbury, J. J. Browning, and R. Sutton, “Ultrasound of the common bile duct in patients undergoing cholecystectomy,” J. Clin. Ultrasound19(2), 73–76 (1991). [CrossRef] [PubMed]
  11. V. Salvatore, A. Borghi, and F. Piscaglia, “Contrast-enhanced ultrasound for liver imaging: Recent advances,” Curr. Pharm. Des.18(15), 2236–2252 (2012). [CrossRef] [PubMed]
  12. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005). [CrossRef]
  13. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Hoboken: Wiley; 2012), Chap. 5.
  14. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998). [CrossRef] [PubMed]
  15. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997). [CrossRef] [PubMed]
  16. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: A frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B.11(10), 2128–2138 (1994). [CrossRef]
  17. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol.50(20), 4913–4930 (2005). [CrossRef] [PubMed]
  18. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain,” Appl. Opt.39(13), 2235–2244 (2000). [CrossRef] [PubMed]
  19. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(5), R2999–R3002 (1993). [CrossRef] [PubMed]
  20. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.69(18), 2658–2661 (1992). [CrossRef] [PubMed]
  21. R. Irvin, FRED Technical Support, Photon Engineering, (personal communication, 2014).
  22. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990). [CrossRef] [PubMed]
  23. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt.1(3), 342–355 (1996). [CrossRef] [PubMed]
  24. P. D. Agrba, M. Y. Kirillin, A. I. Abelevich, E. V. Zagaynova, and V. A. Kamensky, “Compression as a method for increasing the informativity of optical coherence tomography of biotissues,” Opt107(Spec.), 853–858 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited