OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1465–1482

Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement

Alexander Jelzow, Heidrun Wabnitz, Ilias Tachtsidis, Evgeniya Kirilina, Rüdiger Brühl, and Rainer Macdonald  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1465-1482 (2014)
http://dx.doi.org/10.1364/BOE.5.001465


View Full Text Article

Enhanced HTML    Acrobat PDF (1435 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In functional near-infrared spectroscopy (fNIRS) superficial hemodynamics can mask optical signals related to brain activity. We present a method to separate superficial and cerebral absorption changes based on the analysis of changes in moments of time-of-flight distributions and a two-layered model. The related sensitivity factors were calculated from individual optical properties. The method was validated on a two-layer liquid phantom. Absorption changes in the lower layer were retrieved with an accuracy better than 20%. The method was successfully applied to in vivo data and compared to the reconstruction of homogeneous absorption changes.

© 2014 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 24, 2014
Published: April 10, 2014

Citation
Alexander Jelzow, Heidrun Wabnitz, Ilias Tachtsidis, Evgeniya Kirilina, Rüdiger Brühl, and Rainer Macdonald, "Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement," Biomed. Opt. Express 5, 1465-1482 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012). [CrossRef] [PubMed]
  2. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage85(Pt 1), 6–27 (2014). [CrossRef] [PubMed]
  3. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004). [CrossRef] [PubMed]
  4. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a Near-Infrared Spectrometer (NIRO 300) for the Detection of Intracranial Oxygenation Changes in the Adult Head,” Stroke32(11), 2492–2500 (2001). [CrossRef] [PubMed]
  5. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011). [CrossRef] [PubMed]
  6. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012). [CrossRef] [PubMed]
  7. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” in Front. Neuroenergetics (2010).
  8. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009). [CrossRef] [PubMed]
  9. R. B. Saager and A. J. Berger, “Direct characterization and removal of interfering absorption trends in two-layer turbid media,” J. Opt. Soc. Am. A22(9), 1874–1882 (2005). [CrossRef] [PubMed]
  10. R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011). [CrossRef] [PubMed]
  11. J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt.14(5), 054032 (2009). [CrossRef] [PubMed]
  12. T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage85(Pt 1), 150–165 (2014). [CrossRef] [PubMed]
  13. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt.12(4), 044014 (2007). [CrossRef] [PubMed]
  14. Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work?” Neuroimage45(3), 788–794 (2009). [CrossRef] [PubMed]
  15. E. Kirilina, N. Yu, A. Jelzow, H. Wabnitz, A. M. Jacobs, and I. Tachtsidis, “Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex,” Front Hum Neurosci7, 864 (2013). [PubMed]
  16. T. Yamada, S. Umeyama, and K. Matsuda, “Separation of fNIRS Signals into Functional and Systemic Components Based on Differences in Hemodynamic Modalities,” PLoS ONE7(11), e50271 (2012). [CrossRef] [PubMed]
  17. X. Cui, S. Bray, and A. L. Reiss, “Functional Near Infrared Spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage49(4), 3039–3046 (2010). [CrossRef] [PubMed]
  18. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage85(Pt 1), 28–50 (2014). [PubMed]
  19. Y. Nomura, O. Hazeki, and M. Tamura, “Exponential Attenuation of Light Along Nonlinear Path Through the Biological Model,” in Oxygen Transport to Tissue XI, K. Rakusan, G. P. Biro, T. K. Goldstick, and Z. Turek, eds., Advances in Experimental Medicine and Biology No. 248 (Springer US, 1989), pp. 77–80.
  20. Y. Nomura and M. Tamura, “Picosecond Time of Flight Measurement of Living Tissue: Time Resolved Beer-Lambert Law,” in Oxygen Transport to Tissue XIII, T. K. Goldstick, M. McCabe, and D. J. Maguire, eds., Advances in Experimental Medicine and Biology No. 316 (Springer US, 1992), pp. 131–136.
  21. Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997). [CrossRef] [PubMed]
  22. J. Steinbrink, “Near-infrared-spectroscopy on the adult human head with picosecond resolution,” PhD Thesis, FU Berlin (2000).
  23. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001). [CrossRef] [PubMed]
  24. L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express4(12), 2893–2910 (2013). [CrossRef] [PubMed]
  25. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of Optical Properties of Highly Scattering Media by Moments of Distributions of Times of Flight of Photons,” Appl. Opt.42(28), 5785–5792 (2003). [CrossRef] [PubMed]
  26. M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007). [CrossRef] [PubMed]
  27. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt.17(1), 016002 (2012). [CrossRef] [PubMed]
  28. H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE5859, 58590H (2005). [CrossRef]
  29. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010). [CrossRef] [PubMed]
  30. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt.8(3), 512–516 (2003). [CrossRef] [PubMed]
  31. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, P. D. Ninni, F. Martelli, and G. Zaccanti, “Inter-Laboratory Comparison of Optical Properties Performed on Intralipid and India Ink,” in Biomedical Optics and 3-D Imaging (Optical Society of America, 2012), p. BW1A.6.
  32. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, A. Pifferi, A. Torricelli, D. Contini, L. M. G. Zucchelli, L. Spinelli, R. Cubeddu, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, and G. Zaccanti, “Performance assessment of time-domain optical brain imagers: a multi-laboratory study,” Proc. SPIE8583, 85830L (2013). [CrossRef]
  33. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15(2), 486–500 (2007). [CrossRef] [PubMed]
  34. C. A. Laury-Micoulaut, “The n-th centered moment of a multiple convolution and its applications to an intercloud gas model,” Astron. Astrophys.51, 343–346 (1976).
  35. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  36. A. Liemert and A. Kienle, “Light diffusion in a turbid cylinder. II. Layered case,” Opt. Express18(9), 9266–9279 (2010). [CrossRef] [PubMed]
  37. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  38. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993). [CrossRef] [PubMed]
  39. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The Accuracy of Near Infrared Spectroscopy and Imaging during Focal Changes in Cerebral Hemodynamics,” Neuroimage13(1), 76–90 (2001). [CrossRef] [PubMed]
  40. H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Macdonald, H. Obrig, J. Steinbrink, R. Erdmann, and O. Raitza, “A Time-Domain NIR Brain Imager Applied in Functional Stimulation Experiments,” in Photon Migration and Diffuse-Light Imaging II, K. and C. Licha, ed., Proc. SPIE (Optical Society of America, 2005), Vol. 5859, p. WA5.
  41. H. Wabnitz, A. Liebert, D. Contini, L. Spinelli, and A. Torricelli, “Depth Selectivity in Time-Domain Optical Brain Imaging Based on Time Windows and Moments of Time-of-Flight Distributions,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), p. BMD9.
  42. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995). [CrossRef] [PubMed]
  43. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt.32(4), 418–425 (1993). [CrossRef] [PubMed]
  44. M. Ferrari, Q. Wei, R. A. De Blasi, V. Quaresima, and G. Zaccanti, “Variability of human brain and muscle optical pathlength in different experimental conditions,” Proc. SPIE1888, 466–472 (1993). [CrossRef]
  45. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  46. A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt.17(5), 057005 (2012). [CrossRef] [PubMed]
  47. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed, Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins University Press, 1996).
  48. A. Jelzow, “In vivo quantification of absorption changes in the human brain by time-domain diffuse near-infrared spectroscopy,” PhD Thesis, TU Berlin (2013).
  49. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” PhD Thesis, University College London (1991).
  50. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol.39(1), 177–196 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited