OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1483–1493

Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model

Qi Liu, Yao Li, Hongyang Lu, and Shanbao Tong  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1483-1493 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1938 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The study of hemodynamic and vascular changes following ischemic stroke is of great importance in the understanding of physiological and pathological processes during the thrombus formation. The photothrombosis model is preferred by researchers in stroke study for its minimal invasiveness, controllable infarct volume and lesion location. Nevertheless, there is a lack in high spatiotemporal resolution techniques for real time monitoring of cerebral blood flow (CBF) changes in 2D-profile. In this study, we implemented a microscopic laser speckle imaging (LSI) system to detect CBF and other vascular changes in the rodent model of photothrombotic stroke. Using a high resolution and high speed CCD (640 × 480 pixels, 60 fps), online image registration technique, and automatic parabolic curve fitting, we obtained real time CBF and blood velocity profile (BVP) changes in cortical vessels. Real time CBF and BVP monitoring has been shown to reveal details of vascular disturbances and the stages of blood coagulation in photothrombotic stroke. Moreover, LSI also provides information on additional parameters including vessel morphologic size, blood flow centerline velocity and CBF spatiotemporal fluctuations, which are very important for understanding the physiology and neurovascular pathology in the photothrombosis model.

© 2014 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Speckle Imaging and Diagnostics

Original Manuscript: December 5, 2013
Revised Manuscript: March 16, 2014
Manuscript Accepted: April 8, 2014
Published: April 11, 2014

Qi Liu, Yao Li, Hongyang Lu, and Shanbao Tong, "Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model," Biomed. Opt. Express 5, 1483-1493 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Ann. Neurol.17(5), 497–504 (1985). [CrossRef] [PubMed]
  2. M. Boquillon, J. P. Boquillon, and J. Bralet, “Photochemically induced, graded cerebral infarction in the mouse by laser irradiation evolution of brain edema,” J. Pharmacol. Toxicol. Methods27(1), 1–6 (1992). [CrossRef] [PubMed]
  3. A. H. Hainsworth and H. S. Markus, “Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review,” J. Cereb. Blood Flow Metab.28(12), 1877–1891 (2008). [CrossRef] [PubMed]
  4. M. D. Ginsberg and R. Busto, “Rodent models of cerebral ischemia,” Stroke20(12), 1627–1642 (1989). [CrossRef] [PubMed]
  5. S. Braeuninger and C. Kleinschnitz, “Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems,” Exp. Transl. Stroke Med.1(1), 8 (2009). [CrossRef] [PubMed]
  6. B. Furie and B. C. Furie, “Mechanisms of thrombus formation,” N. Engl. J. Med.359(9), 938–949 (2008). [CrossRef] [PubMed]
  7. S. P. Jackson, “Arterial thrombosis--insidious, unpredictable and deadly,” Nat. Med.17(11), 1423–1436 (2011). [CrossRef] [PubMed]
  8. J. M. Cosemans, A. Angelillo-Scherrer, N. J. Mattheij, and J. W. Heemskerk, “The effects of arterial flow on platelet activation, thrombus growth, and stabilization,” Cardiovasc. Res.99(2), 342–352 (2013). [CrossRef] [PubMed]
  9. A. Mailhac, J. J. Badimon, J. T. Fallon, A. Fernández-Ortiz, B. Meyer, J. H. Chesebro, V. Fuster, and L. Badimon, “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets,” Circulation90(2), 988–996 (1994). [CrossRef] [PubMed]
  10. W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson, “A shear gradient-dependent platelet aggregation mechanism drives thrombus formation,” Nat. Med.15(6), 665–673 (2009). [CrossRef] [PubMed]
  11. J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of erythrocyte aggregation on velocity profiles in venules,” Am. J. Physiol. Heart Circ. Physiol.280(1), H222–H236 (2001). [PubMed]
  12. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4(2), e22 (2006). [CrossRef] [PubMed]
  13. J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011). [CrossRef] [PubMed]
  14. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  15. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004). [CrossRef] [PubMed]
  16. H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002). [CrossRef] [PubMed]
  17. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006). [CrossRef] [PubMed]
  18. J. S. Paul, A. R. Luft, E. Yew, and F. S. Sheu, “Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using Laser Speckle Contrast Analysis (LASCA),” Neuroimage29(1), 38–45 (2006). [CrossRef] [PubMed]
  19. A. Sigler, M. H. Mohajerani, and T. H. Murphy, “Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11759–11764 (2009). [CrossRef] [PubMed]
  20. W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov, “Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra,” J. Neurosci.30(29), 9859–9868 (2010). [CrossRef] [PubMed]
  21. P. Miao, A. Rege, N. Li, N. V. Thakor, and S. Tong, “High Resolution Cerebral Blood Flow Imaging by Registered Laser Speckle Contrast Analysis,” IEEE Trans. Biomed. Eng.57(5), 1152–1157 (2010). [CrossRef] [PubMed]
  22. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24(4), 325–376 (1992). [CrossRef]
  23. A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012). [CrossRef] [PubMed]
  24. P. A. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999). [CrossRef]
  25. Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.52(7), 4151–4157 (2011). [CrossRef] [PubMed]
  26. A. Rege, K. Murari, N. Li, and N. Thakor, “Imaging microvascular flow characteristics using laser speckle contrast imaging,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, (IEEE, 2010), 1978–1981. [CrossRef]
  27. M. Sato and N. Ohshima, “Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells,” Biorheology31(2), 143–153 (1994). [PubMed]
  28. A. Gnasso, C. Carallo, C. Irace, M. S. De Franceschi, P. L. Mattioli, C. Motti, and C. Cortese, “Association between wall shear stress and flow-mediated vasodilation in healthy men,” Atherosclerosis156(1), 171–176 (2001). [CrossRef] [PubMed]
  29. B. D. Watson, R. Prado, A. Veloso, J. P. Brunschwig, and W. D. Dietrich, “Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke,” Stroke33(2), 428–434 (2002). [CrossRef] [PubMed]
  30. N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010). [CrossRef] [PubMed]
  31. J. M. Valdueza, B. Draganski, O. Hoffmann, U. Dirnagl, and K. M. Einhäupl, “Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings,” Stroke30(1), 81–86 (1999). [CrossRef] [PubMed]
  32. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000). [CrossRef] [PubMed]
  33. A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express1(1), 246–259 (2010). [CrossRef] [PubMed]
  34. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging,” J. Cereb. Blood Flow Metab.33(6), 798–808 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (3431 KB)     
» Media 2: MP4 (2932 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited