OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1494–1511

Cornea characterization using a combined multiphoton microscopy and optical coherence tomography system

Tom Lai and Shuo Tang  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1494-1511 (2014)
http://dx.doi.org/10.1364/BOE.5.001494


View Full Text Article

Enhanced HTML    Acrobat PDF (2211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a multimodal imaging system which combines multiphoton microscopy and optical coherence tomography to visualize the morphological structures, and to quantify the refractive index (RI) and thickness of cornea. The morphological similarities and differences at different corneal layers across various species are identified. In the piscine and human corneas, the stromata exhibit thin fibers that indicate an overall collagen direction. Human corneas display collagen micro-folds which cause increased light attenuation. In the murine, porcine and bovine corneas, the stromata show interwoven collagen patterns. The Bowman’s layer and the Descemet’s membrane are also distinguished in some species. The RI and thicknesses are quantified for the epithelium and the stromal layers respectively, where the epithelium is found to have slightly higher RI than the stroma. The average epithelial and stromal RI are, respectively, 1.371 ± 0.016 and 1.360 ± 0.008 for the murine corneas; 1.502 ± 0.057 and 1.335 ± 0.011 for the piscine corneas; 1.433 ± 0.023 and 1.357 ± 0.013 for the human corneas; 1.476 ± 0.091 and 1.343 ± 0.013 for the porcine corneas; and 1.400 ± 0.007 and 1.376 ± 0.003 for the bovine corneas. The multimodal system can potentially provide a comprehensive characterization of the cornea.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Multimodal Imaging

History
Original Manuscript: January 28, 2014
Revised Manuscript: March 30, 2014
Manuscript Accepted: April 4, 2014
Published: April 14, 2014

Citation
Tom Lai and Shuo Tang, "Cornea characterization using a combined multiphoton microscopy and optical coherence tomography system," Biomed. Opt. Express 5, 1494-1511 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refract. Surg.37(3), 588–598 (2011). [CrossRef] [PubMed]
  2. R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Experiment. Ophthalmol.37(1), 100–117 (2009). [CrossRef] [PubMed]
  3. M. D. Merindano, J. Costa, M. Canals, J. M. Potau, and D. Ruano, “A comparative study of Bowman’s layer in some mammals: relationships with other constituent corneal structures,” Eur. J. Anat.6(3), 133–139 (2002).
  4. K. M. Meek and A. J. Quantock, “The use of x-ray scattering techniques to determine corneal ultrastructure,” Prog. Retin. Eye Res.20(1), 95–137 (2001). [CrossRef] [PubMed]
  5. Y. L. Kim, J. T. Walsh, T. K. Goldstick, and M. R. Glucksberg, “Variation of corneal refractive index with hydration,” Phys. Med. Biol.49(5), 859–868 (2004). [CrossRef] [PubMed]
  6. F. Aptel, N. Olivier, A. Deniset-Besseau, J. M. Legeais, K. Plamann, M. C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010). [CrossRef] [PubMed]
  7. B. R. Masters, “Correlation of histology and linear and nonlinear microscopy of the living human cornea,” J. Biophotonics2(3), 127–139 (2009). [CrossRef] [PubMed]
  8. N. Efron, I. Perez-Gomez, H. A. Mutalib, and J. Hollingsworth, “Confocal microscopy of the normal human cornea,” Cont. Lens Anterior Eye24(1), 16–24 (2001). [CrossRef] [PubMed]
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  10. S. Tang, Y. Zhou, K. K. H. Chan, and T. Lai, “Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography,” Opt. Lett.36(24), 4800–4802 (2011). [CrossRef] [PubMed]
  11. Y. Zhou, K. K. H. Chan, T. Lai, and S. Tang, “Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography,” Biomed. Opt. Express4(1), 38–50 (2013). [CrossRef] [PubMed]
  12. R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun.281(7), 1823–1832 (2008). [CrossRef] [PubMed]
  13. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J.88(2), 1377–1386 (2005). [CrossRef] [PubMed]
  14. J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea30(6), 692–701 (2011). [CrossRef] [PubMed]
  15. B. J. Kaluzny, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea25(8), 960–965 (2006). [CrossRef] [PubMed]
  16. S. Shah, A. Chatterjee, M. Mathai, S. P. Kelly, J. Kwartz, D. Henson, and D. McLeod, “Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic,” Ophthalmology106(11), 2154–2160 (1999). [CrossRef] [PubMed]
  17. S. R. Uhlhorn, F. Manns, H. Tahi, P. Rol, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (2003). [CrossRef]
  18. J. W. McLaren, C. B. Nau, J. C. Erie, and W. M. Bourne, “Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods,” Am. J. Ophthalmol.137(6), 1011–1020 (2004). [CrossRef] [PubMed]
  19. M. Bechmann, M. J. Thiel, A. S. Neubauer, S. Ullrich, K. Ludwig, K. R. Kenyon, and M. W. Ulbig, “Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry,” Cornea20(1), 50–54 (2001). [CrossRef] [PubMed]
  20. C. Wirbelauer and D. T. Pham, “Continuous monitoring of corneal thickness changes during LASIK with online optical coherence pachymetry,” J. Cataract Refract. Surg.30(12), 2559–2568 (2004). [CrossRef] [PubMed]
  21. Y. Barkana, Y. Gerber, U. Elbaz, S. Schwartz, G. Ken-Dror, I. Avni, and D. Zadok, “Central corneal thickness measurement with the pentacam Scheimpflug system, optical low-coherence reflectometry pachymeter, and ultrasound pachymetry,” J. Cataract Refract. Surg.31(9), 1729–1735 (2005). [CrossRef] [PubMed]
  22. A. Faramarzi and H. Ziai, “Central corneal thickness measurement by ultrasound versus Orbscan II,” J Ophthalmic Vis Res3(2), 83–86 (2008). [PubMed]
  23. B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci.85(10), 977–981 (2008). [CrossRef] [PubMed]
  24. K. D. Rao, Y. Verma, H. S. Patel, and P. K. Gupta, “Non-invasive ophthalmic imaging of adult zebrafish eye using optical coherence tomography,” Curr. Sci.90(11), 1506–1510 (2006).
  25. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett.20(21), 2258–2260 (1995). [CrossRef] [PubMed]
  26. N. Morishige, A. J. Wahlert, M. C. Kenney, D. J. Brown, K. Kawamoto, T. Chikama, T. Nishida, and J. V. Jester, “Second-harmonic imaging microscopy of normal human and keratoconus cornea,” Invest. Ophthalmol. Vis. Sci.48(3), 1087–1094 (2007). [CrossRef] [PubMed]
  27. N. Morishige, W. M. Petroll, T. Nishida, M. C. Kenney, and J. V. Jester, “Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals,” J. Cataract Refract. Surg.32(11), 1784–1791 (2006). [CrossRef] [PubMed]
  28. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3(1), 1–15 (2012). [CrossRef] [PubMed]
  29. S. Hayashi, T. Osawa, and K. Tohyama, “Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians,” J. Morphol.254(3), 247–258 (2002). [CrossRef] [PubMed]
  30. S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995). [PubMed]
  31. L. R. Nelson, D. O. Hodge, and W. M. Bourne, “In vitro comparison of Chen medium and Optisol-GS medium for human corneal storage,” Cornea19(6), 782–787 (2000). [CrossRef] [PubMed]
  32. S. Patel, J. L. Alió, and J. J. Pérez-Santonja, “Refractive index change in bovine and human corneal stroma before and after LASIK: a study of untreated and re-treated corneas implicating stromal hydration,” Invest. Ophthalmol. Vis. Sci.45(10), 3523–3530 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited