OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1512–1529

Prostate cancer detection using combined auto-fluorescence and light reflectance spectroscopy: ex vivo study of human prostates

Vikrant Sharma, Ephrem O. Olweny, Payal Kapur, Jeffrey A. Cadeddu, Claus G. Roehrborn, and Hanli Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1512-1529 (2014)
http://dx.doi.org/10.1364/BOE.5.001512


View Full Text Article

Enhanced HTML    Acrobat PDF (2926 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study was conducted to evaluate the capability of detecting prostate cancer (PCa) using auto-fluorescence lifetime spectroscopy (AFLS) and light reflectance spectroscopy (LRS). AFLS used excitation at 447 nm with four emission wavelengths (532, 562, 632, and 684 nm), where their lifetimes and weights were analyzed using a double exponent model. LRS was measured between 500 and 840 nm and analyzed by a quantitative model to determine hemoglobin concentrations and light scattering. Both AFLS and LRS were taken on n = 724 distinct locations from both prostate capsular (nc = 185) and parenchymal (np = 539) tissues, including PCa tissue, benign peripheral zone tissue and benign prostatic hyperplasia (BPH), of fresh ex vivo radical prostatectomy specimens from 37 patients with high volume, intermediate-to-high-grade PCa (Gleason score, GS ≥7). AFLS and LRS parameters from parenchymal tissues were analyzed for statistical testing and classification. A feature selection algorithm based on multinomial logistic regression was implemented to identify critical parameters in order to classify high-grade PCa tissue. The regression model was in turn used to classify PCa tissue at the individual aggressive level of GS = 7,8,9. Receiver operating characteristic curves were generated and used to determine classification accuracy for each tissue type. We show that our dual-modal technique resulted in accuracies of 87.9%, 90.1%, and 85.1% for PCa classification at GS = 7, 8, 9 within parenchymal tissues, and up to 91.1%, 91.9%, and 94.3% if capsular tissues were included for detection. Possible biochemical and physiological mechanisms causing signal differences in AFLS and LRS between PCa and benign tissues were also discussed.

© 2014 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics in Cancer Research

History
Original Manuscript: March 4, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 7, 2014
Published: April 14, 2014

Citation
Vikrant Sharma, Ephrem O. Olweny, Payal Kapur, Jeffrey A. Cadeddu, Claus G. Roehrborn, and Hanli Liu, "Prostate cancer detection using combined auto-fluorescence and light reflectance spectroscopy: ex vivo study of human prostates," Biomed. Opt. Express 5, 1512-1529 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Yossepowitch, A. Bjartell, J. A. Eastham, M. Graefen, B. D. Guillonneau, P. I. Karakiewicz, R. Montironi, and F. Montorsi, “Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences,” Eur. Urol.55(1), 87–99 (2009). [CrossRef] [PubMed]
  2. J. A. Wieder and M. S. Soloway, “Incidence, etiology, location, prevention and treatment of positive surgical margins after radical prostatectomy for prostate cancer,” J. Urol.160(2), 299–315 (1998). [CrossRef] [PubMed]
  3. J. D. Sammon, Q. D. Trinh, S. Sukumar, P. Ravi, A. Friedman, M. Sun, J. Schmitges, C. Jeldres, W. Jeong, N. Mander, J. O. Peabody, P. I. Karakiewicz, and M. Harris, “Risk factors for biochemical recurrence following radical perineal prostatectomy in a large contemporary series: A detailed assessment of margin extent and location,” Urol. Oncol.31(8), 1470–1476 (2013). [CrossRef] [PubMed]
  4. A. Tewari and P. Narayan, “Novel staging tool for localized prostate cancer: a pilot study using genetic adaptive neural networks,” J. Urol.160(2), 430–436 (1998). [CrossRef] [PubMed]
  5. L. W. D’Avolio, M. S. Litwin, S. O. Rogers, and A. A. Bui, “Automatic identification and classification of surgical margin status from pathology reports following prostate cancer surgery,” AMIA Annu. Symp. Proc.2007, 160–164 (2007). [PubMed]
  6. S. Salem, S. S. Chang, P. E. Clark, R. Davis, S. D. Herrell, Y. Kordan, M. L. Wills, S. B. Shappell, R. Baumgartner, S. Phillips, J. A. Smith, M. S. Cookson, and D. A. Barocas, “Comparative analysis of whole mount processing and systematic sampling of radical prostatectomy specimens: pathological outcomes and risk of biochemical recurrence,” J. Urol.184(4), 1334–1340 (2010). [CrossRef] [PubMed]
  7. V. Iremashvili, S. D. Lokeshwar, M. S. Soloway, L. Pelaez, S. A. Umar, M. Manoharan, and M. Jordá, “Partial sampling of radical prostatectomy specimens: detection of positive margins and extraprostatic extension,” Am. J. Surg. Pathol.37(2), 219–225 (2013). [PubMed]
  8. H. Fukuhara, K. Inoue, H. Satake, K. Tamura, T. Karashima, I. Yamasaki, I. Tatsuo, A. Kurabayashi, M. Furihata, and T. Shuin, “Photodynamic diagnosis of positive margin during radical prostatectomy: preliminary experience with 5-aminolevulinic acid,” Int. J. Urol.18(8), 585–591 (2011). [CrossRef] [PubMed]
  9. N. Lue, J. W. Kang, C. C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012). [CrossRef] [PubMed]
  10. B. Turkbey and P. L. Choyke, “Multiparametric MRI and prostate cancer diagnosis and risk stratification,” Curr. Opin. Urol.22(4), 310–315 (2012). [CrossRef] [PubMed]
  11. V. Sharma, D. Kashyap, A. Mathker, S. Narvenkar, K. Bensalah, W. Kabbani, A. Tuncel, J. A. Cadeddu, and H. Liu, “Optical reflectance spectroscopy for detection of human prostate cancer,” Conf. Proc. IEEE Eng. Med. Biol. Soc.2009, 118–121 (2009). [PubMed]
  12. B. Kim, C. Temiyasathit, K. Bensalah, A. Tuncel, J. Cadeddu, W. Kabbani, V. Mathker, and H. Liu, “An efficient procedure for classification of prostate cancer in optical spectra,” Expert Syst. Appl.37, 3863–3869 (2010). [CrossRef]
  13. G. Salomon, T. Hess, A. Erbersdobler, C. Eichelberg, S. Greschner, A. N. Sobchuk, A. K. Korolik, N. A. Nemkovich, J. Schreiber, M. Herms, M. Graefen, and H. Huland, “The feasibility of prostate cancer detection by triple spectroscopy,” Eur. Urol.55(2), 376–384 (2009). [CrossRef] [PubMed]
  14. P. P. Dangle, K. K. Shah, B. Kaffenberger, and V. R. Patel, “The use of high resolution optical coherence tomography to evaluate robotic radical prostatectomy specimens,” Int. Braz. J. Urol.35(3), 344–353 (2009). [CrossRef] [PubMed]
  15. L. Gao, H. Zhou, M. J. Thrall, F. Li, Y. Yang, Z. Wang, P. Luo, K. K. Wong, G. S. Palapattu, and S. T. Wong, “Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy,” Biomed. Opt. Express2(4), 915–926 (2011). [CrossRef] [PubMed]
  16. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express16(22), 17505–17520 (2008). [CrossRef] [PubMed]
  17. Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt.14(3), 030506 (2009). [CrossRef] [PubMed]
  18. Z. Jiang, D. Piao, G. R. Holyoak, J. W. Ritchey, K. E. Bartels, G. Slobodov, C. F. Bunting, and J. S. Krasinski, “Trans-rectal ultrasound-coupled spectral optical tomography of total hemoglobin concentration enhances assessment of the laterality and progression of a transmissible venereal tumor in canine prostate,” Urology77(1), 237–242 (2011). [CrossRef] [PubMed]
  19. V. C. Kavuri and H. Liu, “Hierarchical Clustering Method to Improve Transrectal Ultrasound-guided Diffuse Optical Tomography for Prostate Cancer Imaging,” Acad. Radiol.21(2), 250–262 (2014). [CrossRef] [PubMed]
  20. R. J. Halter, A. R. Schned, J. A. Heaney, and A. Hartov, “Passive bioelectrical properties for assessing high- and low-grade prostate adenocarcinoma,” Prostate71(16), 1759–1767 (2011). [CrossRef] [PubMed]
  21. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406(6791), 35–36 (2000). [CrossRef] [PubMed]
  22. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, “Time-domain fluorescence lifetime imaging applied to biological tissue,” Photochem. Photobiol. Sci.3(8), 795–801 (2004). [CrossRef] [PubMed]
  23. P. Crow, N. Stone, C. A. Kendall, R. A. Persad, and M. P. Wright, “Optical diagnostics in urology: current applications and future prospects,” BJU Int.92(4), 400–407 (2003). [CrossRef] [PubMed]
  24. V. Sharma, S. Shivalingaiah, Y. Peng, D. Euhus, Z. Gryczynski, and H. Liu, “Auto-fluorescence lifetime and light reflectance spectroscopy for breast cancer diagnosis: potential tools for intraoperative margin detection,” Biomed. Opt. Express3(8), 1825–1840 (2012). [CrossRef] [PubMed]
  25. V. Sharma, J. W. He, S. Narvenkar, Y. B. Peng, and H. Liu, “Quantification of light reflectance spectroscopy and its application: determination of hemodynamics on the rat spinal cord and brain induced by electrical stimulation,” Neuroimage56(3), 1316–1328 (2011). [CrossRef] [PubMed]
  26. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996). [CrossRef] [PubMed]
  27. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  28. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998). [CrossRef] [PubMed]
  29. A. Bettelheim, H. Brown, K. Campbell, O. Farrell, and O. Torres, Introduction to General, Organic and Biochemistry, 10th ed. (Brooks/Cole, Cengage Learning, 2013).
  30. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express17(3), 1256–1267 (2009). [CrossRef] [PubMed]
  31. R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt.16(8), 087010 (2011). [CrossRef] [PubMed]
  32. M. M. Shen and C. Abate-Shen, “Molecular genetics of prostate cancer: new prospects for old challenges,” Genes Dev.24(18), 1967–2000 (2010). [CrossRef] [PubMed]
  33. D. A. Barron and D. R. Rowley, “The reactive stroma microenvironment and prostate cancer progression,” Endocr. Relat. Cancer19(6), R187–R204 (2012). [CrossRef] [PubMed]
  34. T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. (New York, Springer, 2009).
  35. T. D. Wager, L. Y. Atlas, M. A. Lindquist, M. Roy, C.-W. Woo, and E. Kross, “An fMRI-Based Neurologic Signature of Physical Pain,” N. Engl. J. Med.368(15), 1388–1397 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited