OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1554–1568

Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow

Christophe Minetti, Thomas Podgorski, Gwennou Coupier, and Frank Dubois  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1554-1568 (2014)
http://dx.doi.org/10.1364/BOE.5.001554


View Full Text Article

Enhanced HTML    Acrobat PDF (2887 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution. Obtaining this distribution is not straightforward and requires special processing to automate the analysis. We present an original method that fully automates the analysis and provides distributions that are further analyzed to extract physical properties of the fluid. Details of the numerical implementation, as well as sample experimental results are presented.

© 2014 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: February 18, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: April 11, 2014
Published: April 17, 2014

Citation
Christophe Minetti, Thomas Podgorski, Gwennou Coupier, and Frank Dubois, "Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow," Biomed. Opt. Express 5, 1554-1568 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Minetti and C. Buffone, “Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.89(1), 013007 (2014). [CrossRef] [PubMed]
  2. Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt.51(2), 255–267 (2012). [CrossRef] [PubMed]
  3. I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express20(9), 10295–10309 (2012). [CrossRef] [PubMed]
  4. I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express21(25), 30947–30957 (2013). [CrossRef] [PubMed]
  5. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt.43(36), 6536–6544 (2004). [CrossRef] [PubMed]
  6. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express2(2), 331–344 (2011). [CrossRef] [PubMed]
  7. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt.48(16), 2983–2990 (2009). [CrossRef] [PubMed]
  8. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: Application to the monitoring of drinking water resources,” Appl. Opt.52(1), A68–A80 (2013). [CrossRef] [PubMed]
  9. R. Liu, D. K. Dey, D. Boss, P. Marquet, and B. Javidi, “Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis,” J. Opt. Soc. Am. A28(6), 1204–1210 (2011). [CrossRef] [PubMed]
  10. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express20(27), 28485–28493 (2012). [CrossRef] [PubMed]
  11. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt.38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  12. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt.43(5), 1131–1139 (2004). [CrossRef] [PubMed]
  13. J.-M. Poiseuille, C. R. Hebd. Seances Acad. Sci.1, 554 (1835).
  14. N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, and T. Podgorski, “Hydrodynamical lift of vesicles undear shear flow in microgravity,” Europhys. Lett.83(2), 24002 (2008). [CrossRef]
  15. C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt.47(29), 5305–5314 (2008). [CrossRef] [PubMed]
  16. V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, and T. Podgorski, “Micro-macro link in rheology of erythrocyte and vesicle suspensions,” Biophys. J.95(6), L33–L35 (2008). [CrossRef] [PubMed]
  17. K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, B. Haveman, and J. Mellema, “Rheological behavior of a dispersion of small lipid bilayer vesicles,” Langmuir13(25), 6658–6668 (1997). [CrossRef]
  18. M. Abkarian, C. Lartigue, and A. Viallat, “Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force,” Phys. Rev. Lett.88(6), 068103 (2002). [CrossRef] [PubMed]
  19. V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow,” Europhys. Lett.82(5), 58005 (2008). [CrossRef]
  20. G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids20(11), 111702 (2008). [CrossRef]
  21. J. Deschamps, V. Kantsler, and V. Steinberg, “Phase Diagram of Single Vesicle Dynamical States in Shear Flow,” Phys. Rev. Lett.102(11), 118105 (2009). [CrossRef] [PubMed]
  22. J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, “Dynamics of a vesicle in general flow,” Proc. Natl. Acad. Sci. U.S.A.106(28), 11444–11447 (2009). [CrossRef] [PubMed]
  23. H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhys. Lett.89(2), 28002 (2010). [CrossRef]
  24. G. Coupier, A. Farutin, C. Minetti, T. Podgorski, and C. Misbah, “Shape Diagram of Vesicles in Poiseuille Flow,” Phys. Rev. Lett.108(17), 178106 (2012). [CrossRef] [PubMed]
  25. M. Levant, J. Deschamps, E. Afik, and V. Steinberg, “Characteristic spatial scale of vesicle pair interactions in a plane linear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(5), 056306 (2012). [CrossRef] [PubMed]
  26. P.-Y. Gires, A. Srivastav, C. Misbah, T. Podgorski, and G. Coupier, “Pairwise hydrodynamic interactions and diffusion in a vesicle suspension,” Phys. Fluids26(1), 013304 (2014). [CrossRef]
  27. P. Olla, “The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow,” J. Phys. II7(10), 1533–1540 (1997). [CrossRef]
  28. V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, “Dynamics of Nearly Spherical Vesicles in an External Flow,” Phys. Rev. Lett.99(21), 218101 (2007). [CrossRef] [PubMed]
  29. G. Danker and C. Misbah, “Rheology of a Dilute Suspension of Vesicles,” Phys. Rev. Lett.98(8), 088104 (2007). [CrossRef] [PubMed]
  30. B. Kaoui, G. Biros, and C. Misbah, “Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?” Phys. Rev. Lett.103(18), 188101 (2009). [CrossRef] [PubMed]
  31. H. Zhao, A. Spann, and E. S. G. Shaqfeh, “The dynamics of a vesicle in a wall-bound shear flow,” Phys. Fluids23(12), 121901 (2011). [CrossRef]
  32. T. Biben, A. Farutin, and C. Misbah, “Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(3), 031921 (2011). [CrossRef] [PubMed]
  33. A. Farutin and C. Misbah, “Squaring, Parity Breaking, and S Tumbling of Vesicles under Shear Flow,” Phys. Rev. Lett.109(24), 248106 (2012). [CrossRef] [PubMed]
  34. A. Farutin and C. Misbah, “Rheology of vesicle suspensions under combined steady and oscillating shear flows,” J. Fluid Mech.700, 362–381 (2012). [CrossRef]
  35. G. Boedec, M. Jaeger, and M. Leonetti, “Settling of a vesicle in the limit of quasispherical shapes,” J. Fluid Mech.690, 227–261 (2012). [CrossRef]
  36. A. Farutin and C. Misbah, “Analytical and Numerical Study of Three Main Migration Laws for Vesicles Under Flow,” Phys. Rev. Lett.110(10), 108104 (2013). [CrossRef] [PubMed]
  37. D. Abreu and U. Seifert, “Noisy Nonlinear Dynamics of Vesicles in Flow,” Phys. Rev. Lett.110(23), 238103 (2013). [CrossRef]
  38. H. Zhao and E. S. G. Shaqfeh, “The dynamics of a non-dilute vesicle suspension in a simple shear flow,” J. Fluid Mech.725, 709–731 (2013). [CrossRef]
  39. T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois, and C. Misbah, “Dynamics of vesicle suspension in shear flow between walls,” Microgravity Sci. Technol.23(2), 263–270 (2011). [CrossRef]
  40. A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annu. Rev. Fluid Mech.37(1), 43–69 (2005). [CrossRef] [PubMed]
  41. M. I. Angelova, S. Soleau, P. Meleard, J.-F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external A.C. electric fields. Kinetics and applications,” Prog. Colloid Polym. Sci.89, 127 (1992).
  42. J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express21(22), 26432–26449 (2013). [CrossRef] [PubMed]
  43. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt.52(16), 3790–3801 (2013). [CrossRef] [PubMed]
  44. T. Kreis, “Digital holographic interference phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A3(6), 847–855 (1986). [CrossRef]
  45. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–180 (1982). [CrossRef]
  46. D. C. Ghigliz and M. D. Pritt, Two-Dimensional Phase unwrapping. Theory, Algorithms, and Sofware (Wiley-Interscience 1998).
  47. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A23(12), 3177–3190 (2006). [CrossRef] [PubMed]
  48. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett.31(10), 1405–1407 (2006). [CrossRef] [PubMed]
  49. F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt.41(14), 2621–2626 (2002). [CrossRef] [PubMed]
  50. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14(13), 5895–5908 (2006). [CrossRef] [PubMed]
  51. A. El Mallahi and F. Dubois, “Separation of overlapped particles in digital holographic microscopy,” Opt. Express21(5), 6466–6479 (2013). [CrossRef] [PubMed]
  52. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express19(7), 6684–6698 (2011). [CrossRef] [PubMed]
  53. D. Mumford and J. Shah, “Optimal approximation by piece-wise smooth functions and associated variational problems,” Commun. Pure Appl. Math.42(5), 577–685 (1989). [CrossRef]
  54. O. Monnom, F. Dubois, C. Yourassowsky, and J. C. Legros, “Improvement in visibility of an in-focus reconstructed image in digital holography by reduction of the influence of out-of-focus objects,” Appl. Opt.44(18), 3827–3832 (2005). [CrossRef] [PubMed]
  55. X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, “Lift and down-gradient shear-induced diffusion in red blood cell suspensions,” Phys. Rev. Lett.110(10), 108101 (2013). [CrossRef] [PubMed]
  56. A. Srivastav, T. Podgorski, and G. Coupier, “Efficiency of size-dependent particle separation by pinched flow fractionation,” Microfluid. Nanofluid.13(5), 697–701 (2012). [CrossRef]
  57. M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem.76(18), 5465–5471 (2004). [CrossRef] [PubMed]
  58. F. Da Cunha and E. Hinch, “Shear-induced dispersion in a dilute suspension of rough spheres,” J. Fluid Mech.309(-1), 211–223 (1996). [CrossRef]
  59. R. E. Pattle, “Diffusion from an instantaneous point source with a concentration-dependent coefficient,” Q. J. Mech. Appl. Math.12(4), 407–409 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited