OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1610–1615

Use of colloidal quantum dots as a digitally switched swept light source for gold nanoparticle based hyperspectral microscopy

Kazunori Hoshino, Pratixa. P. Joshi, Gauri. Bhave, Konstantin V. Sokolov, and Xiaojing Zhang  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1610-1615 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method to utilize colloidal quantum dots (QDs) as a swept light source for hyperspectral microscopy. The use of QD allows for uniform multicolor emission which covers visible-NIR wavelengths. We used 8 colors of CdSe/ZnS and CdTe/ZnS colloidal quantum dots with the peak emission wavelengths from 520 nm to 800 nm. The QDs are packed in a compact enclosure, composing a low-cost, solid-state swept light source that can be easily used in most microscopes. Multicolor emission from the QDs is simply controlled by digitally switching excitation UVLEDs, eliminating the use of mechanically-driven gratings or filters. We used gold nanoparticles as optical markers for hyperspectral microscopy. Due to the effect of localized surface plasmon resonance, gold nanoparticles demonstrate size and shape-dependent absorption spectra. Employed in a standard microscope, the QD light source enabled multispectral absorption imaging of macrophage cells labeled with gold nanorods and nanospheres.

© 2014 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1530) Medical optics and biotechnology : Cell analysis
(230.3670) Optical devices : Light-emitting diodes
(300.6550) Spectroscopy : Spectroscopy, visible
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 21, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: April 15, 2014
Published: April 18, 2014

Kazunori Hoshino, Pratixa. P. Joshi, Gauri. Bhave, Konstantin V. Sokolov, and Xiaojing Zhang, "Use of colloidal quantum dots as a digitally switched swept light source for gold nanoparticle based hyperspectral microscopy," Biomed. Opt. Express 5, 1610-1615 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry43(4), 239–247 (2001). [CrossRef] [PubMed]
  2. A. Y. Fong and E. Wachman, “Hyperspectral Imaging for the Life Sciences,” Biophoton. Int.15, 38 (2008).
  3. K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip11(20), 3449–3457 (2011). [CrossRef] [PubMed]
  4. J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq, H. Liu, D. R. Rana, L. Cheng, A. T. Lin, G. A. Hughes, X. J. Zhang, and H. R. Garner, “Molecular profiling of individual tumor cells by hyperspectral microscopic imaging,” Transl. Res.159(5), 366–375 (2012). [CrossRef] [PubMed]
  5. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  6. P. P. Joshi, S. J. Yoon, Y. S. Chen, S. Emelianov, and K. V. Sokolov, “Development and optimization of near-IR contrast agents for immune cell tracking,” Biomed. Opt. Express4(11), 2609–2618 (2013). [CrossRef] [PubMed]
  7. N. R. Jana, L. Gearheart, and C. Murphy, “Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template,” Adv. Mater.13(18), 1389–1393 (2001). [CrossRef]
  8. B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater.15(10), 1957–1962 (2003). [CrossRef]
  9. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968). [CrossRef]
  10. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express18(9), 8867–8878 (2010). [CrossRef] [PubMed]
  11. S. Fantini, B. B. Barbieri, E. Gratton, M. Franceschini, J. S. Maier, and S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995).
  12. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39(34), 6498–6507 (2000). [CrossRef] [PubMed]
  13. S. Susstrunk, R. Buckley, and S. Swen, “Standard RGB color spaces.” in Proceedings of Color and Imaging Conference, (Society for Imaging Science and Technology, 1999), pp. 127–134.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited