OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1636–1648

Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1636-1648 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5862 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in poly(dimethylsiloxane) (PDMS). We apply aqueous glucose solutions with different concentrations and monitor continuously how the transmission spectrum changes due to glucose. Based on these measurements, we derived a linear regression model, to relate the measured glucose spectra with concentration with an error-of-fitting of only 1.14 mM. This paper explains the challenges involved and discusses the optimal configuration for on-chip evanescent absorption spectroscopy. In addition, the prospects for using this sensor for glucose detection in complex physiological media (e.g. serum) is briefly discussed.

© 2014 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(300.1030) Spectroscopy : Absorption
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: December 13, 2013
Revised Manuscript: March 21, 2014
Manuscript Accepted: April 6, 2014
Published: April 24, 2014

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, "Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip," Biomed. Opt. Express 5, 1636-1648 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Ruedy and W. V. Tamborlane, “The landmark JDRF continuous glucose monitoring randomized trials: a look back at the accumulated evidence,” J. Cardiovasc. Transl.5(4), 380–387 (2012) [CrossRef]
  2. L. A. Marquardt, M. A. Arnold, and G. W. Small, “Near-infrared spectroscopic measurement of glucose in a protein matrix,” Anal. Chem.65(22), 3271–3278, (1993) [CrossRef] [PubMed]
  3. G. Yoon, “Statistical analysis for glucose prediction in blood samples by infrared spectroscopy, inHandbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, 2008). [CrossRef]
  4. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010) [CrossRef]
  5. A. V. Velasco, P. Cheben, P. J. Bock, A. Delage, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D. Xu, M. Florjanczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chipwith microphotonic silicon spiral waveguides,” Opt. Lett.38(5), 706–708 (2013) [CrossRef] [PubMed]
  6. Z. Xia, A. A. Aftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011) [CrossRef] [PubMed]
  7. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip.13, 2161–2166 (2013). [CrossRef] [PubMed]
  8. J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc.56, 129–135 (2011). [CrossRef]
  9. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  10. J. Charrier, M. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuator B-Chem.173, 468–476 (2012). [CrossRef]
  11. P. Ma, D. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express21(24), 29927–29937 (2013). [CrossRef]
  12. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express16(16), 11930–11936 (2008). [CrossRef] [PubMed]
  13. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009). [CrossRef]
  14. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. Duan, D. Bordel, and J. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013) [CrossRef] [PubMed]
  15. T. Spuesens, F. Mandorlo, P. Rojo-Romeo, P. Regreny, N. Olivier, J. M. Fedeli, and D. Van Thourhout, “Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line,” J. Lightwave Technol.30(11), 1764–1770 (2012). [CrossRef]
  16. A. L. Washburn and R. C. Bailey, “Photonics-on-a-Chip: Recent advances in integrated waveguides as enabling detection elements for real-world, Lab-on-a-Chip biosensing applications,” Analyist136, 227–236 (2011). [CrossRef]
  17. A. Amerov, J. Chen, and M. Arnold, “Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum,” Appl. Spectrosc.58(10), 1195–1204 (2004). [CrossRef] [PubMed]
  18. W. Bogaerts and S. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photon. J.3(3), 422–432 (2011) [CrossRef]
  19. S. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol.27(18), 4076–7083 (2009) [CrossRef]
  20. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett.18(23), 2520–2522 (2006) [CrossRef]
  21. D. Vermeulen, K. Van Acoleyen, S. Ghosh, S. Selvaraja, W. De Cort, N. Yebo, E. Hallynck, K. De Vos, P. Debackere, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides,” in European Conference on Integrated Optics (ECIO, 2010), paper WeP16.
  22. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010) [CrossRef] [PubMed]
  23. A. H. Harvey, J. S. Gallagher, and J. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998) [CrossRef]
  24. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data9(3), 561–658 (1980) [CrossRef]
  25. C. Z. Tan and J. Arndt, “Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range,” J. Phys. Chem. Solids61(8), 1315–1320 (2000) [CrossRef]
  26. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidics systems in poly(dimethylsiloxane),” Electrophoresis21(1), 27–40 (2000) [CrossRef] [PubMed]
  27. C. Feng, C. Keong, Y. Hsueh, Y. Wang, and H. Sue, “Modeling of long-term creep behavior of structural epoxy adhesives,” Int. J. Adhes. Adhes.25(5), 427–436 (2005) [CrossRef]
  28. T. Spuesens, F. Mandorlo, P. Rojo-Romeo, P. Regreny, N. Olivier, J. M. Fedeli, and D. Van Thourhout, “Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line,” J. Lightwave Technol.30(11), 1764–1770 (2012) [CrossRef]
  29. C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011). [CrossRef]
  30. M. Langendam, Y. Luijf, L. Hooft, J. DeVries, A. Mudde, and R. Scholten, “Continuous glucose monitoring systems for type I diabetes mellitus (Review),” The Cochrane Library2, (John Wiley & Sons, 2012)
  31. R. Feldman and V. Ciriaco, Applied Probability and Stochastic Processes (Springer, 2010) [CrossRef]
  32. K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of Glucose and Other Analytes in Undiluted Human Serum with Near-Infrared Transmission Spectroscopy,” Anal. Chim. Acta.371(1–2), 255–267 (1998) [CrossRef]
  33. S. Sharma, M. Goodarzi, J. Delanghe, H. Ramon, and W. Saeys, “Using experimental data designs and multivariate modelling to assess the effect of glycated serum protein concentration on glucose prediction from near infrared spectra of human serum,” Appl. Spectrosc. (accepted).
  34. E.M.P. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournie, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013) [CrossRef] [PubMed]
  35. R. Liu, K. Xu, Y. Lu, and H. Sun, “Combined optimal-pathlengths method for near-infrared spectroscopy analysis,” Phys. Med. Biol49, 1217–1225 (2004) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited