OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1649–1663

An analytical method for predicting the geometrical and optical properties of the human lens under accommodation

Conor J. Sheil, Mehdi Bahrami, and Alexander V. Goncharov  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 5, pp. 1649-1663 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation.

© 2014 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(080.2468) Geometric optics : First-order optics
(330.7322) Vision, color, and visual optics : Visual optics, accommodation
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision and Visual Optics

Original Manuscript: December 3, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: March 18, 2014
Published: April 28, 2014

Conor J. Sheil, Mehdi Bahrami, and Alexander V. Goncharov, "An analytical method for predicting the geometrical and optical properties of the human lens under accommodation," Biomed. Opt. Express 5, 1649-1663 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. von Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867).
  2. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4, 466–480 (2013). [CrossRef] [PubMed]
  3. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C.-Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Invest. Ophthalmol. Visual Sci.54, 1095–1105 (2013). [CrossRef]
  4. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18, 21905–21917 (2010). [CrossRef] [PubMed]
  5. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J.-M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Visual Sci.54, 6197–6207 (2013). [CrossRef]
  6. A. Gullstrand, Appendix IV of Treatise on Physiological Optics, vol. 1 (Dover Phoenix Editions, 2005).
  7. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer–Verlag, 1980).
  8. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am.70, 220–223 (1980). [CrossRef] [PubMed]
  9. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A2, 1273–1280 (1985). [CrossRef] [PubMed]
  10. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optometry Vis. Sci.85, 330–340 (2008). [CrossRef]
  11. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A.14, 1684–1695 (1997). [CrossRef]
  12. G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9, 2111–2117 (1992). [CrossRef] [PubMed]
  13. M. Bahrami and A. V. Goncharov, “Geometry-invariant gradient refractive index lens: analytical ray tracing,” J. Biomed. Opt.17, 055001 (2012). [CrossRef] [PubMed]
  14. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24, 2157–2174 (2007). [CrossRef]
  15. R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. i. formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A24, 2175–2185 (2007). [CrossRef]
  16. G. Smith, “The optical properties of the crystalline lens and their significance.” Clin. Experimental Opt.86, 3–18 (2003). [CrossRef]
  17. C. Jones, D. Atchison, R. Meder, and J. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vis. Res.45, 2352–2366 (2005). [CrossRef] [PubMed]
  18. E. A. Hermans, P. J. W. Pouwels, M. Dubbelman, J. P. A. Kuijer, R. G. L. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: An MRI and scheimpflug study,” Invest. Ophthalmol. Visual Sci.50, 281–289 (2009). [CrossRef]
  19. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Opt. Vis. Sci.84, 990–995 (2007). [CrossRef]
  20. R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol.: Cell Physiol.293, C797–C804 (2007). [CrossRef]
  21. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Visual Sci.45, 539–545 (2004). [CrossRef]
  22. S. J. Judge and H. J. Burd, “The MRI data of strenk et al. do not suggest lens compression in the unaccommodated state (e-letter),” Invest. Ophthalmol. Visual Sci.45, 539 (2004).
  23. R. A. Schachar, “The change in intralenticular pressure during human accommodation (e-letter),” Invest. Ophthalmol. Visual Sci.45, 539 (2004).
  24. M. Dubbelman, G. V. der Heijde, and H. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vis. Res.45, 117–132 (2005). [CrossRef]
  25. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3, 2471–2488 (2012). [CrossRef] [PubMed]
  26. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. ii. optics of the accommodating aging lens,” J. Opt. Soc. Am. A.24, 2911–2920 (2007). [CrossRef]
  27. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A27, 2432–2441 (2010). [CrossRef]
  28. E. Lanchares, R. Navarro, and B. Calvo, “Hyperelastic modelling of the crystalline lens: Accommodation and presbyopia,” J. Optometry5, 110–120 (2012). [CrossRef]
  29. M. Dubbelman and G. van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vis. Res.41, 1867–1877 (2001). [CrossRef] [PubMed]
  30. M. J. Howcroft and J. A. Parker, “Aspheric curvatures for the human lens,” Vis. Res.17, 1213–1217 (1977). [CrossRef] [PubMed]
  31. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J.-M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1, 1331–1340 (2010). [CrossRef]
  32. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J.-M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78, 39–51 (2004). [CrossRef]
  33. E. Hermans, M. Dubbelman, G. van der Heijde, and R. Heethaar, “Estimating the external force acting on the human eye lens during accommodation by finite element modelling,” Vis. Res.46, 3642–3650 (2006). [CrossRef] [PubMed]
  34. R. Urs, F. Manns, A. Ho, D. Borja, A. Amelinckx, J. Smith, R. Jain, R. Augusteyn, and J.-M. Parel, “Shape of the isolated ex-vivo human crystalline lens,” Vis. Res.49, 74–83 (2009). [CrossRef]
  35. J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A.21, 346–354 (2004). [CrossRef]
  36. R. Urs, A. Ho, F. Manns, and J.-M. Parel, “Age-dependent fourier model of the shape of the isolated ex vivo human crystalline lens,” Vis. Res.50, 1041–1047 (2010). [CrossRef] [PubMed]
  37. A. Ivanoff, “On the influence of accommodation on spherical aberration in the human eye, an attempt to interpret night myopia,” J. Opt. Soc. Am.37, 730–731 (1947). [CrossRef] [PubMed]
  38. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am.39, 370–372 (1949). [CrossRef] [PubMed]
  39. T. Jenkins, “Aberrations of the eye and their effects on vision: 1. spherical aberration,” Br. J. Physiol. Opt.20, 59 (1963). [PubMed]
  40. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the howland aberroscope technique,” Vis. Res.35, 313–323 (1995). [CrossRef] [PubMed]
  41. M. J. Collins, C. F. Wildsoet, and D. A. Atchison, “Monochromatic aberrations and myopia,” Vis. Res.35, 1157–1163 (1995). [CrossRef] [PubMed]
  42. J. He, S. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vis. Res.40, 41–48 (2000). [CrossRef] [PubMed]
  43. S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol.134, 924–926 (2002). [CrossRef] [PubMed]
  44. C. Hazel, M. Cox, and N. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Opt. Vis. Sci.80, 151–158 (2003). [CrossRef]
  45. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accomodation,” J. Vision4, 272–280 (2004). [CrossRef]
  46. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision5, 466–477 (2005). [CrossRef]
  47. Y. Wang, Z.-Q. Wang, H.-Q. Guo, Y. Wang, and T. Zuo, “Wavefront aberrations in the accommodated human eye based on individual eye model,” Optik118, 271–277 (2007). [CrossRef]
  48. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vision9, 1–15 (2009). [CrossRef]
  49. Y.-J. Li, J. A. Choi, H. Kim, S.-Y. Yu, and C.-K. Joo, “Changes in ocular wavefront aberrations and retinal image quality with objective accommodation,” J. CataractRefractive Surg.37, 835–841 (2011).
  50. T. Young, “On the mechanism of the eye,” Philos. Trans. R. Soc. London91, 23–88 (1801). [CrossRef]
  51. N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Visual Sci.49, 1736–1743 (2008). [CrossRef]
  52. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci.49, 2531–2540 (2008). [CrossRef]
  53. G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vis. Res.49, 2442–2452 (2009). [CrossRef] [PubMed]
  54. H. T. Kasprzak, “New approximation for the whole profile of the human crystalline lens,” Ophthalmic Physiol. Opt.20, 31–43 (2000). [CrossRef] [PubMed]
  55. S. Giovanzana, R. A. Schachar, S. Talu, R. D. Kirby, E. Yan, and B. K. Pierscionek, “Evaluation of equations for describing the human crystalline lens,” J. Mod. Opt.60, 406–413 (2013). [CrossRef]
  56. S. G. El Hage and F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am.63, 205–211 (1973). [CrossRef] [PubMed]
  57. J. Sivak and R. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Research23, 59–70 (1983). [CrossRef] [PubMed]
  58. A. Tomlinson, R. P. Hemenger, and R. Garriott, “Method for estimating the spheric aberration of the human crystalline lens in vivo.” Invest. Ophthalmol. Visual Sci.34, 621–629 (1993).
  59. P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett.23, 1713–1715 (1998). [CrossRef]
  60. T. Salmon and L. Thibos, “Relative contribution of the cornea and internal optics to the aberrations of the eye,” Optometry Vis. Sci.75, 235 (1998).
  61. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision1, 1–8 (2001). [CrossRef]
  62. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vis. Res.41, 235–243 (2001). [CrossRef] [PubMed]
  63. S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, “Age-related changes in corneal and ocular higher-order wavefront aberrations,” Am. J. Ophthalmol.137, 988–992 (2004). [CrossRef] [PubMed]
  64. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision4, 262–271 (2004). [CrossRef]
  65. J. L. Alió, P. Schimchak, H. P. Negri, and R. Montées-Micó, “Crystalline lens optical dysfunction through aging,” Ophthalmology112, 2022–2029 (2005). [CrossRef] [PubMed]
  66. M. Millodot and J. Sivak, “Contribution of the cornea and lens to the spherical aberration of the eye,” Vis. Res.19, 685–687 (1979). [CrossRef] [PubMed]
  67. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A.19, 137–143 (2002). [CrossRef]
  68. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res.38, 209–229 (1998). [CrossRef] [PubMed]
  69. J. C. He, J. Gwiazda, F. Thorn, and R. Held, “Wave-front aberrations in the anterior corneal surface and the whole eye,” J. Opt. Soc. Am. A20, 1155–1163 (2003). [CrossRef]
  70. T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A.19, 657–669 (2002). [CrossRef]
  71. J. He, E. Ong, J. Gwiazda, R. Held, and F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci.41, S105 (2000).
  72. H. Burd, S. Judge, and J. Cross, “Numerical modelling of the accommodating lens,” Vis. Res.42, 2235–2251 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1: Fig. 2: Fig. 3:
Fig. 4:

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited