OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1664–1676

Hybrid FMT-MRI applied to in vivo atherosclerosis imaging

Baoqiang Li, Foued Maafi, Romain Berti, Philippe Pouliot, Eric Rhéaume, Jean-Claude Tardif, and Frederic Lesage  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1664-1676 (2014)
http://dx.doi.org/10.1364/BOE.5.001664


View Full Text Article

Enhanced HTML    Acrobat PDF (4570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Combining Fluorescent Molecular Tomography (FMT) with anatomical imaging, e.g. MRI facilitates interpreting functional information. Furthermore, using a heterogeneous model for light propagation has been shown in simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging area due to strong tissue heterogeneity and the presence of air-voids due to lungs. First investigating performance in a phantom and mouse corpse, the MRI-enabled heterogeneous models resulted in an improved quantification of fluorescence reconstructions. The system was then used in mice for in vivo atherosclerosis molecular imaging. Results show that, when using the heterogeneous model, reconstructions were in agreement with the ex vivo measurements. Therefore, the proposed system might serve as a powerful imaging tool for atherosclerosis in mice.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Multimodal Imaging

History
Original Manuscript: March 21, 2014
Revised Manuscript: April 24, 2014
Manuscript Accepted: April 24, 2014
Published: April 28, 2014

Citation
Baoqiang Li, Foued Maafi, Romain Berti, Philippe Pouliot, Eric Rhéaume, Jean-Claude Tardif, and Frederic Lesage, "Hybrid FMT-MRI applied to in vivo atherosclerosis imaging," Biomed. Opt. Express 5, 1664-1676 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1664


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007). [CrossRef] [PubMed]
  2. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010). [CrossRef] [PubMed]
  3. B. Li, M. Abran, C. Matteau-Pelletier, L. Rouleau, T. Lam, R. Sharma, E. Rhéaume, A. Kakkar, J.-C. Tardif, and F. Lesage, “Low-cost three-dimensional imaging system combining fluorescence and ultrasound,” J. Biomed. Opt.16(12), 126010 (2011). [CrossRef] [PubMed]
  4. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” J. Biomed. Opt.15(4), 040503 (2010). [CrossRef] [PubMed]
  5. B. P. Flynn, A. V. DSouza, S. C. Kanick, S. C. Davis, and B. W. Pogue, “White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX,” J. Biomed. Opt.18(4), 046008 (2013). [CrossRef] [PubMed]
  6. K. Radrich, A. Ale, V. Ermolayev, and V. Ntziachristos, “Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan,” J. Biomed. Opt.17(12), 126011 (2012). [CrossRef] [PubMed]
  7. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001). [CrossRef] [PubMed]
  8. T. Pyka, R. Schulz, A. Ale, and V. Ntziachristos, “Revisiting the normalized Born approximation: effects of scattering,” Opt. Lett.36(22), 4329–4331 (2011). [CrossRef] [PubMed]
  9. J. F. P.-J. Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, S. Arridge, J. Ripoll, J. J. Vaquero, and M. Desco, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt.17(3), 036013 (2012). [CrossRef] [PubMed]
  10. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005). [CrossRef] [PubMed]
  11. A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J.-M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011). [CrossRef] [PubMed]
  12. J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009). [CrossRef] [PubMed]
  13. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography,” Nat. Methods9(6), 615–620 (2012). [CrossRef] [PubMed]
  14. A. Ale, V. Ermolayev, N. C. Deliolanis, and V. Ntziachristos, “Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer,” J. Biomed. Opt.18(5), 056006 (2013). [CrossRef] [PubMed]
  15. D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation115(11), 1384–1391 (2007). [CrossRef] [PubMed]
  16. J.-C. Tardif, F. Lesage, F. Harel, P. Romeo, and J. Pressacco, “Imaging biomarkers in atherosclerosis trials,” Circ Cardiovasc Imaging4(3), 319–333 (2011). [CrossRef] [PubMed]
  17. F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol.29(7), 1017–1024 (2009). [CrossRef] [PubMed]
  18. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008). [CrossRef] [PubMed]
  19. Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011). [CrossRef] [PubMed]
  20. C. M. Carpenter, R. Rakow-Penner, S. Jiang, B. L. Daniel, B. W. Pogue, G. H. Glover, and K. D. Paulsen, “Inspired gas-induced vascular change in tumors with magnetic-resonance-guided near-infrared imaging: human breast pilot study,” J. Biomed. Opt.15(3), 036026 (2010). [CrossRef] [PubMed]
  21. J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular disease,” Nature451(7181), 953–957 (2008). [CrossRef] [PubMed]
  22. D. A. Sanan, D. L. Newland, R. Tao, S. Marcovina, J. Wang, V. Mooser, R. E. Hammer, and H. H. Hobbs, “Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a),” Proc. Natl. Acad. Sci. U.S.A.95(8), 4544–4549 (1998). [CrossRef] [PubMed]
  23. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  24. J. Yuan, E. Bae, and X.-C. Tai, “A study on continuous max-flow and min-cut approaches,” in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2217–2224 (2010). [CrossRef]
  25. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  26. S. A. Prahl, “Online resource: http://omlc.ogi.edu/spectra”.
  27. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys.34(6), 2085–2098 (2007). [CrossRef] [PubMed]
  28. P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput.14(6), 1487–1503 (1993). [CrossRef]
  29. V. S. Talanov, C. A. S. Regino, H. Kobayashi, M. Bernardo, P. L. Choyke, and M. W. Brechbiel, “Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging,” Nano Lett.6(7), 1459–1463 (2006). [CrossRef] [PubMed]
  30. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002). [CrossRef] [PubMed]
  31. F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett.36(19), 3723–3725 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited