OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 5 — May. 1, 2014
  • pp: 1690–1699

Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm

Ning Li, Diling Chen, Yan Xu, Songhao Liu, and Heming Zhang  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 5, pp. 1690-1699 (2014)
http://dx.doi.org/10.1364/BOE.5.001690


View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Confocal Raman microspectroscopy is a valuable analytical tool in biological and medical research, allowing the detection of sample variations without external labels or extensive preparation. To determine whether this method can assess the effect of maleic acid on sperm, we prepared human sperm samples incubated in different concentrations of maleic acid, after which Raman spectra from the various regions of sperm cells were recorded. Following the maleic acid treatment, Raman spectra indicated significant changes. Combined with other means, we found that the structures and chemical compositions of sperm membranes were damaged, and even the sperm DNA was damaged by the incorporation of maleic acid. Thus, this technique can be used for detection and identification of maleic acid-induced changes in human sperm at a molecular level. Although this particular application of Raman microspectroscopy still requires further validation, it has potentially promise as a diagnostic tool for reproductive medicine.

© 2014 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1530) Medical optics and biotechnology : Cell analysis
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Cell Studies

History
Original Manuscript: March 14, 2014
Revised Manuscript: April 20, 2014
Manuscript Accepted: April 23, 2014
Published: April 29, 2014

Citation
Ning Li, Diling Chen, Yan Xu, Songhao Liu, and Heming Zhang, "Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm," Biomed. Opt. Express 5, 1690-1699 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-5-1690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Nishimune and H. Tanaka, “Infertility caused by polymorphisms or mutations in spermatogenesis-specific genes,” J. Androl.27(3), 326–334 (2006). [CrossRef] [PubMed]
  2. P. Devroey and A. Van Steirteghem, “A review of ten years experience of ICSI,” Hum. Reprod. Update10(1), 19–28 (2004). [CrossRef] [PubMed]
  3. Z. Pandian, A. Templeton, G. Serour, and S. Bhattacharya, “Number of embryos for transfer after IVF and ICSI: a Cochrane review,” Hum. Reprod.20(10), 2681–2687 (2005). [CrossRef] [PubMed]
  4. D. P. Evenson, L. K. Jost, D. Marshall, M. J. Zinaman, E. Clegg, K. Purvis, P. de Angelis, and O. P. Claussen, “Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic,” Hum. Reprod.14(4), 1039–1049 (1999). [CrossRef] [PubMed]
  5. C. Kennedy, P. Ahlering, H. Rodriguez, S. Levy, and P. Sutovsky, “Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction,” Reprod. Biomed. Online22(3), 272–276 (2011). [CrossRef] [PubMed]
  6. V. M. Brugh and L. I. Lipshultz, “Male factor infertility,” Med. Clin. North Am.88(2), 367–385 (2004). [CrossRef] [PubMed]
  7. A. E. Willets, J. M. Corbo, and J. N. Brown, “Clomiphene for the treatment of male infertility,” Reprod. Sci.20(7), 739–744 (2013). [CrossRef] [PubMed]
  8. D. S. Guzick, J. W. Overstreet, P. Factor-Litvak, C. K. Brazil, S. T. Nakajima, C. Coutifaris, S. A. Carson, P. Cisneros, M. P. Steinkampf, J. A. Hill, D. Xu, D. L. Vogel, and National Cooperative Reproductive Medicine Network, “Sperm morphology, motility, and concentration in fertile and infertile men,” N. Engl. J. Med.345(19), 1388–1393 (2001). [CrossRef] [PubMed]
  9. A. Zaini, M. G. Jennings, and H. W. Baker, “Are conventional sperm morphology and motility assessments of predictive value in subfertile men?” Int. J. Androl.8(6), 427–435 (1985). [CrossRef] [PubMed]
  10. C. Avendaño, A. Franchi, S. Taylor, M. Morshedi, S. Bocca, and S. Oehninger, “Fragmentation of DNA in morphologically normal human spermatozoa,” Fertil. Steril.91(4), 1077–1084 (2009). [CrossRef] [PubMed]
  11. K. Meister, D. A. Schmidt, E. Bründermann, and M. Havenith, “Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa,” Analyst (Lond.)135(6), 1370–1374 (2010). [CrossRef] [PubMed]
  12. J. L. Fernández, L. Muriel, V. Goyanes, E. Segrelles, J. Gosálvez, M. Enciso, M. LaFromboise, and C. De Jonge, “Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test,” Fertil. Steril.84(4), 833–842 (2005). [CrossRef] [PubMed]
  13. P. L. Olive and J. P. Banáth, “The comet assay: a method to measure DNA damage in individual cells,” Nat. Protoc.1(1), 23–29 (2006). [CrossRef] [PubMed]
  14. M. Muratori, L. Tamburrino, V. Tocci, A. Costantino, S. Marchiani, C. Giachini, I. Laface, C. Krausz, M. C. Meriggiola, G. Forti, and E. Baldi, “Small variations in crucial steps of TUNEL assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation,” J. Androl.31(4), 336–345 (2010). [CrossRef] [PubMed]
  15. M. Bungum, L. Bungum, and A. Giwercman, “Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility,” Asian J. Androl.13(1), 69–75 (2011). [CrossRef] [PubMed]
  16. C. Krafft, T. Knetschke, R. H. W. Funk, and R. Salzer, “Identification of organelles and vesicles in single cells by Raman microspectroscopic mapping,” Vib. Spectrosc.38(1-2), 85–93 (2005). [CrossRef]
  17. C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J.93(2), 668–673 (2007). [CrossRef] [PubMed]
  18. C. M. Krishna, G. D. Sockalingum, J. Kurien, L. Rao, L. Venteo, M. Pluot, M. Manfait, and V. B. Kartha, “Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma,” Appl. Spectrosc.58(9), 1128–1135 (2004). [CrossRef] [PubMed]
  19. M. V. Chowdary, K. K. Kumar, J. Kurien, S. Mathew, and C. M. Krishna, “Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy,” Biopolymers83(5), 556–569 (2006). [CrossRef] [PubMed]
  20. M. S. Vidyasagar, K. Maheedhar, B. M. Vadhiraja, D. J. Fernendes, V. B. Kartha, and C. M. Krishna, “Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: A pilot study,” Biopolymers89(6), 530–537 (2008). [CrossRef] [PubMed]
  21. K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, and B. Lendl, “Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy,” Anal. Chem.72(22), 5529–5534 (2000). [CrossRef] [PubMed]
  22. G. B. Jung, Y. J. Lee, G. Lee, and H. K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express4(11), 2673–2682 (2013). [CrossRef] [PubMed]
  23. A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol.2010, 101864 (2010). [CrossRef] [PubMed]
  24. T. Huser, C. A. Orme, C. W. Hollars, M. H. Corzett, and R. Balhorn, “Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells,” J Biophotonics2(5), 322–332 (2009). [CrossRef] [PubMed]
  25. C. Mallidis, J. Wistuba, B. Bleisteiner, O. S. Damm, P. Gross, F. Wübbeling, C. Fallnich, M. Burger, and S. Schlatt, “In situ visualization of damaged DNA in human sperm by Raman microspectroscopy,” Hum. Reprod.26(7), 1641–1649 (2011). [CrossRef] [PubMed]
  26. V. Sánchez, K. Redmann, J. Wistuba, F. Wübbeling, M. Burger, H. Oldenhof, W. F. Wolkers, S. Kliesch, S. Schlatt, and C. Mallidis, “Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy,” Fertil. Steril.98, 1124–1129.e1123 (2012).
  27. F. Liu, Y. Zhu, Y. Liu, X. Wang, P. Ping, X. Zhu, H. Hu, Z. Li, and L. He, “Real-time Raman microspectroscopy scanning of the single live sperm bound to human zona pellucida,” Fertil. Steril.99, 684–689.e684 (2013).
  28. Z. Huang, G. Chen, X. Chen, J. Wang, J. Chen, P. Lu, and R. Chen, “Rapid and label-free identification of normal spermatozoa based on image analysis and micro-Raman spectroscopy,” J Biophotonics1–5 (2013).
  29. P. D. Brown-Woodman, E. J. Post, P. Y. Chow, and I. G. White, “Effects of malonic, maleic, citric and caffeic acids on the motility of human sperm and penetration of cervical mucus,” Int. J. Fertil.30(3), 38–44 (1985). [PubMed]
  30. D. M. Stein and H. Schnieden, “Effect of antidepressant drugs on the in-vitro eggpenetrating ability of golden hamster epididymal spermatozoa,” Reprod. Fertil.68(1), 227–233 (1983). [CrossRef]
  31. H. Singh, M. S. Jabbal, A. R. Ray, and P. Vasudevan, “Effect of anionic polymeric hydrogels on spermatozoa motility,” Biomaterials5(5), 307–309 (1984). [CrossRef] [PubMed]
  32. R. Sanchez, E. Toepfer-Petersen, R. J. Aitken, and W. B. Schill, “A new method for evaluation of the acrosome reaction in viable human spermatozoa,” Andrologia23(3), 197–203 (1991). [CrossRef] [PubMed]
  33. S. Ramu and R. Jeyendran, “The Hypo-osmotic Swelling Test for Evaluation of Sperm Membrane Integrity,” in Spermatogenesis, D. T. Carrell and K. I. Aston, eds. (Humana Press, 2013).
  34. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature347(6290), 301–303 (1990). [CrossRef] [PubMed]
  35. W. L. Peticolas, “Raman spectroscopy of DNA and proteins,” in Methods in Enzymology, S. Kenneth, ed. (Academic Press, 1995).
  36. H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas., “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers50(6), 656–666 (1999). [CrossRef] [PubMed]
  37. J. M. Benevides and G. J. Thomas., “Characterization of DNA structures by Raman spectroscopy: high-salt and low-salt forms of double helical poly(dG-dC) in H2O and D2O solutions and application to B, Z and A-DNA,” Nucleic Acids Res.11(16), 5747–5761 (1983). [CrossRef] [PubMed]
  38. S. C. Erfurth and W. L. Peticolas, “Melting and premelting phenomenon in DNA by laser Raman scattering,” Biopolymers14(2), 247–264 (1975). [CrossRef] [PubMed]
  39. H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas., “Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy,” Nucleic Acids Res.28(17), 3379–3385 (2000). [CrossRef] [PubMed]
  40. S. Krimm and J. Bandekar, “Vibrational analysis of peptides, polypeptides, and proteins. V. Normal vibrations of beta-turns,” Biopolymers19(1), 1–29 (1980). [CrossRef] [PubMed]
  41. Y. Xu, Z. Zhou, H. Yang, Y. Xu, and Z. Zhang, “Raman spectroscopic study of microcosmic photodamage of the space structure of DNA sensitized by Yangzhou haematoporphyrin derivative and Photofrin II,” J. Photochem. Photobiol. B52(1-3), 30–34 (1999). [CrossRef] [PubMed]
  42. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express1(1), 17–30 (2010). [CrossRef] [PubMed]
  43. Z. Zhuang, N. Li, Z. Guo, M. Zhu, K. Xiong, and S. Chen, “Study of molecule variations in renal tumor based on confocal micro-Raman spectroscopy,” J. Biomed. Opt.18(3), 031103 (2013). [CrossRef] [PubMed]
  44. B. P. Gaber and W. L. Peticolas, “On the quantitative interpretation of biomembrane structure by Raman spectroscopy,” Biochim. Biophys. Acta465(2), 260–274 (1977). [CrossRef] [PubMed]
  45. N. Li, S. X. Li, Z. Y. Guo, Z. F. Zhuang, R. Li, K. Xiong, S. J. Chen, and S. H. Liu, “Micro-Raman spectroscopy study of the effect of mid-ultraviolet radiation on erythrocyte membrane,” J. Photochem. Photobiol. B112, 37–42 (2012). [CrossRef] [PubMed]
  46. R. S. Jeyendran, H. H. Van der Ven, M. Perez-Pelaez, B. G. Crabo, and L. J. D. Zaneveld, “Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics,” J. Reprod. Fertil.70(1), 219–228 (1984). [CrossRef] [PubMed]
  47. D. Lechniak, A. Kedzierski, and D. Stanislawski, “The use of HOS test to evaluate membrane functionality of boar sperm capacitated in vitro,” Reprod. Domest. Anim.37(6), 379–380 (2002). [CrossRef] [PubMed]
  48. H. N. Sallam, A. Farrag, A.-F. Agameya, Y. El-Garem, and F. Ezzeldin, “The use of the modified hypo-osmotic swelling test for the selection of immotile testicular spermatozoa in patients treated with ICSI: a randomized controlled study,” Hum. Reprod.20(12), 3435–3440 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited