OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1700–1708

In vivo two-photon microscopy of the hippocampus using glass plugs

Mary Grace M. Velasco and Michael J. Levene  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1700-1708 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1158 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-photon microscopy has been used in conjunction with micro-optics, such as GRIN lenses, to access subcortical structures in the intact mouse brain. In this study, we demonstrate the use of thick glass windows, or plugs, for high-resolution, large field-of-view two-photon imaging of the hippocampus in a live mouse. These plugs are less expensive, yield larger fields-of-view and are simpler to use than GRIN lenses while requiring less tissue removal compared to previous methods based on cortical ablation. To demonstrate the capabilities of our system, we show fluorescence images of dendritic spines in the CA1 region of the hippocampus in THY1-YFP transgenic mice.

© 2014 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: February 6, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 23, 2014
Published: April 30, 2014

Mary Grace M. Velasco and Michael J. Levene, "In vivo two-photon microscopy of the hippocampus using glass plugs," Biomed. Opt. Express 5, 1700-1708 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  3. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013). [CrossRef] [PubMed]
  4. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  5. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011). [CrossRef] [PubMed]
  6. W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. D. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci.14(8), 1089–1093 (2011). [CrossRef] [PubMed]
  7. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  8. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009). [CrossRef] [PubMed]
  9. M. L. Andermann, N. B. Gilfoy, G. J. Goldey, R. N. Sachdev, M. Wölfel, D. A. McCormick, R. C. Reid, and M. J. Levene, “Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms,” Neuron80(4), 900–913 (2013). [CrossRef] [PubMed]
  10. T. H. Chia and M. J. Levene, “Microprisms for in vivo multilayer cortical imaging,” J. Neurophysiol.102(2), 1310–1314 (2009). [CrossRef] [PubMed]
  11. T. H. Chia and M. J. Levene, “Multi-layer in vivo imaging of neocortex using a microprism,” Cold Spring Harbor Protocols 2010, pdb prot5476 (2010).
  12. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003). [CrossRef] [PubMed]
  13. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol.91(4), 1908–1912 (2004). [CrossRef] [PubMed]
  14. R. P. J. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med.17(2), 223–228 (2011). [CrossRef] [PubMed]
  15. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012). [CrossRef] [PubMed]
  16. R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009). [CrossRef] [PubMed]
  17. GRINTECH Gmbh, “High-NA Objective for 2-Photon Microscopy,” http://www.grintech.de/grin-lens-systems-for-medical-applications.html .
  18. C. Wang and N. Ji, “Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics,” Opt. Express21(22), 27142–27154 (2013). [CrossRef] [PubMed]
  19. A. Mizrahi, J. C. Crowley, E. Shtoyerman, and L. C. Katz, “High-resolution in vivo imaging of hippocampal dendrites and spines,” The Journal of Neuroscience24, 3147–3151 (2004).
  20. Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci.16(3), 264–266 (2013). [CrossRef] [PubMed]
  21. N. L. Rochefort and A. Konnerth, “Dendritic spines: from structure to in vivo function,” EMBO Rep.13(8), 699–708 (2012). [CrossRef] [PubMed]
  22. M. B. Moser, M. Trommald, and P. Andersen, “An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses,” Proc. Natl. Acad. Sci. U.S.A.91(26), 12673–12675 (1994). [CrossRef] [PubMed]
  23. A. Auffret, V. Gautheron, M. Repici, R. Kraftsik, H. T. Mount, J. Mariani, and C. Rovira, “Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer's disease,” The Journal of Neuroscience29, 10144–10152 (2009).
  24. J. del Valle, S. Bayod, A. Camins, C. Beas-Zárate, D. A. Velázquez-Zamora, I. González-Burgos, and M. Pallàs, “Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer’s disease,” J. Alzheimers Dis.32(1), 233–240 (2012). [PubMed]
  25. S. J. Bulley, C. J. G. Drew, and A. J. Morton, “Direct visualisation of abnormal dendritic spine morphology in the hippocampus of the R6/2 transgenic mouse model of Huntington's Disease,” Journal of Huntington's Disease1, 267–273 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited