OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1709–1720

Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues

Steven Y. Leigh, Ye Chen, and Jonathan T.C. Liu  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1709-1720 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6010 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively ‘labels’ in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues.

© 2014 Optical Society of America

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.4090) Medical optics and biotechnology : Modulation techniques
(170.5810) Medical optics and biotechnology : Scanning microscopy
(230.1040) Optical devices : Acousto-optical devices
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:

Original Manuscript: March 13, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 25, 2014
Published: April 30, 2014

Steven Y. Leigh, Ye Chen, and Jonathan T.C. Liu, "Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues," Biomed. Opt. Express 5, 1709-1720 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-of-care pathology,” Opt. Lett.37(12), 2430–2432 (2012). [CrossRef] [PubMed]
  2. J. T. C. Liu, N. O. Loewke, M. J. Mandella, R. M. Levenson, J. M. Crawford, and C. H. Contag, “Point-of-care pathology with miniature microscopes,” Anal. Cell Pathol. (Amst.)34(3), 81–98 (2011). [PubMed]
  3. J. T. C. Liu, M. J. Mandella, N. O. Loewke, H. Haeberle, H. Ra, W. Piyawattanametha, O. Solgaard, G. S. Kino, and C. H. Contag, “Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery,” J. Biomed. Opt.15(2), 026029 (2010). [CrossRef] [PubMed]
  4. O. De Wever and M. Mareel, “Role of tissue stroma in cancer cell invasion,” J. Pathol.200(4), 429–447 (2003). [CrossRef] [PubMed]
  5. M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science317(5845), 1749–1753 (2007). [CrossRef] [PubMed]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  7. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “Nanoscopy in a living mouse brain,” Science335(6068), 551 (2012). [CrossRef] [PubMed]
  8. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  9. M. Rajadhyaksha, G. Menaker, T. Flotte, P. J. Dwyer, and S. González, “Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide Mohs micrographic surgery without frozen histopathology,” J. Invest. Dermatol.117(5), 1137–1143 (2001). [CrossRef] [PubMed]
  10. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  11. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  13. E. H. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun.111(5-6), 536–547 (1994). [CrossRef]
  14. L. K. Wong, M. J. Mandella, G. S. Kino, and T. D. Wang, “Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture,” Opt. Lett.32(12), 1674–1676 (2007). [CrossRef] [PubMed]
  15. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt.13(3), 034020 (2008). [CrossRef] [PubMed]
  16. J. T. C. Liu, M. J. Mandella, S. Friedland, R. Soetikno, J. M. Crawford, C. H. Contag, G. S. Kino, and T. D. Wang, “Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia,” J. Biomed. Opt.11(5), 054019 (2006). [CrossRef] [PubMed]
  17. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003). [CrossRef] [PubMed]
  18. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Sig. Proc. Mag.18(6), 57–75 (2001). [CrossRef]
  19. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, “Fluorescence coherence tomography,” Opt. Express14(16), 7134–7143 (2006). [CrossRef] [PubMed]
  20. Y. Chen, D. Wang, and J. T. C. Liu, “Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations,” Opt. Lett.37(21), 4495–4497 (2012). [CrossRef] [PubMed]
  21. N. Chen, C. H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008). [CrossRef] [PubMed]
  22. K. Isobe, H. Kawano, T. Takeda, A. Suda, A. Kumagai, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy,” Biomed. Opt. Express3(7), 1594–1608 (2012). [CrossRef] [PubMed]
  23. K. Isobe, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Implementation of spatial overlap modulation nonlinear optical microscopy using an electro-optic deflector,” Biomed. Opt. Express4(10), 1937–1945 (2013). [CrossRef] [PubMed]
  24. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol.42(7), 1415–1426 (1997). [CrossRef] [PubMed]
  25. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J.93, 70–83 (1941). [CrossRef]
  26. D. Wang, Y. Chen, Y. Wang, and J. T. C. Liu, “Comparison of line-scanned and point-scanned dual-axis confocal microscope performance,” Opt. Lett.38(24), 5280–5283 (2013). [CrossRef] [PubMed]
  27. D. Wang, Y. Chen, and J. T. C. Liu, “A liquid optical phantom with tissue-like heterogeneities for confocal microscopy,” Biomed. Opt. Express3(12), 3153–3160 (2012). [CrossRef] [PubMed]
  28. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun.3, 632 (2012). [CrossRef] [PubMed]
  29. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited