OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1731–1743

In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography

Jason M. Tucker-Schwartz, Kelsey R. Beavers, Wesley W. Sit, Amy T. Shah, Craig L. Duvall, and Melissa C. Skala  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1731-1743 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current imaging techniques capable of tracking nanoparticles in vivo supply either a large field of view or cellular resolution, but not both. Here, we demonstrate a multimodality imaging platform of optical coherence tomography (OCT) techniques for high resolution, wide field of view in vivo imaging of nanoparticles. This platform includes the first in vivo images of nanoparticle pharmacokinetics acquired with photothermal OCT (PTOCT), along with overlaying images of microvascular and tissue morphology. Gold nanorods (51.8 ± 8.1 nm by 15.2 ± 3.3 nm) were intravenously injected into mice, and their accumulation into mammary tumors was non-invasively imaged in vivo in three dimensions over 24 hours using PTOCT. Spatial frequency analysis of PTOCT images indicated that gold nanorods reached peak distribution throughout the tumors by 16 hours, and remained well-dispersed up to 24 hours post-injection. In contrast, the overall accumulation of gold nanorods within the tumors peaked around 16 hours post-injection. The accumulation of gold nanorods within the tumors was validated post-mortem with multiphoton microscopy. This shows the utility of PTOCT as part of a powerful multimodality imaging platform for the development of nanomedicines and drug delivery technologies.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 10, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 28, 2014
Published: May 1, 2014

Jason M. Tucker-Schwartz, Kelsey R. Beavers, Wesley W. Sit, Amy T. Shah, Craig L. Duvall, and Melissa C. Skala, "In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography," Biomed. Opt. Express 5, 1731-1743 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Schwartz, A. M. Shetty, R. E. Price, R. J. Stafford, J. C. Wang, R. K. Uthamanthil, K. Pham, R. J. McNichols, C. L. Coleman, and J. D. Payne, “Feasibility Study of Particle-Assisted Laser Ablation of Brain Tumors in Orthotopic Canine Model,” Cancer Res.69(4), 1659–1667 (2009). [CrossRef] [PubMed]
  2. G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res.69(9), 3892–3900 (2009). [CrossRef] [PubMed]
  3. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  4. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold Nanoparticles: A Revival in Precious Metal Administration to Patients,” Nano Lett.11(10), 4029–4036 (2011). [CrossRef] [PubMed]
  5. S. K. Libutti, G. F. Paciotti, A. A. Byrnes, H. R. Alexander, W. E. Gannon, M. Walker, G. D. Seidel, N. Yuldasheva, and L. Tamarkin, “Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine,” Clin. Cancer Res.16(24), 6139–6149 (2010). [CrossRef] [PubMed]
  6. A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007). [CrossRef]
  7. A. K. Oyelere, P. C. Chen, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Peptide-conjugated gold nanorods for nuclear targeting,” Bioconjug. Chem.18(5), 1490–1497 (2007). [CrossRef] [PubMed]
  8. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007). [CrossRef] [PubMed]
  9. J. Park, A. Estrada, J. A. Schwartz, P. Diagaradjane, S. Krishnan, A. K. Dunn, and J. W. Tunnell, “Intra-Organ Biodistribution of Gold Nanoparticles Using Intrinsic Two-photon Induced Photoluminescence,” Lasers Surg. Med.42(7), 630–639 (2010). [CrossRef] [PubMed]
  10. X. M. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. M. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008). [CrossRef] [PubMed]
  11. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials29(12), 1912–1919 (2008). [CrossRef] [PubMed]
  12. Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release139(1), 81–84 (2009). [CrossRef] [PubMed]
  13. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol.79(939), 248–253 (2006). [CrossRef] [PubMed]
  14. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers,” Nano Lett.11(2), 348–354 (2011). [CrossRef] [PubMed]
  15. C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(32), 13511–13516 (2009). [CrossRef] [PubMed]
  16. L. Tong, Q. S. Wei, A. Wei, and J. X. Cheng, “Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects,” Photochem. Photobiol.85(1), 21–32 (2009). [CrossRef] [PubMed]
  17. J. Fang, H. Nakamura, and H. Maeda, “The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect,” Adv. Drug Deliv. Rev.63(3), 136–151 (2011). [CrossRef] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  19. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003). [CrossRef] [PubMed]
  20. G. J. Liu, A. J. Lin, B. J. Tromberg, and Z. P. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express3(10), 2669–2680 (2012). [CrossRef] [PubMed]
  21. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  22. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009). [CrossRef] [PubMed]
  23. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A.107(18), 8085–8090 (2010). [CrossRef] [PubMed]
  24. D. Jacob, R. L. Shelton, and B. E. Applegate, “Fourier domain pump-probe optical coherence tomography imaging of Melanin,” Opt. Express18(12), 12399–12410 (2010). [CrossRef] [PubMed]
  25. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem.19(35), 6407–6411 (2009). [CrossRef] [PubMed]
  26. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett.8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  27. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express3(11), 2881–2895 (2012). [CrossRef] [PubMed]
  28. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  29. Y. Jung, R. Reif, Y. G. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett.11(7), 2938–2943 (2011). [CrossRef] [PubMed]
  30. J. M. Tucker-Schwartz, T. Hong, D. C. Colvin, Y. Q. Xu, and M. C. Skala, “Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes,” Opt. Lett.37(5), 872–874 (2012). [CrossRef] [PubMed]
  31. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Y. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express1(1), 2–16 (2010). [CrossRef] [PubMed]
  32. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain, “Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment,” Proc. Natl. Acad. Sci. U.S.A.95(8), 4607–4612 (1998). [CrossRef] [PubMed]
  33. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol.25(10), 1165–1170 (2007). [CrossRef] [PubMed]
  34. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today11(17-18), 812–818 (2006). [CrossRef] [PubMed]
  35. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B109(29), 13857–13870 (2005). [CrossRef] [PubMed]
  36. M. D. Wojtkowski, T. H. Ko, J. G. Fujimoto, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, J. S. Schuman, and J. S. Duker, “Ultrahigh speed, ultrahigh resolution optical coherence tomography using spectral domain detection,” Invest. Ophthalmol. Vis. Sci.45, U50 (2004).
  37. S. Moon, S. W. Lee, and Z. P. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express18(24), 24395–24404 (2010). [CrossRef] [PubMed]
  38. T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J.93(4), 1347–1353 (2007). [CrossRef] [PubMed]
  39. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013). [CrossRef] [PubMed]
  40. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan, “Mediating Tumor Targeting Efficiency of Nanoparticles Through Design,” Nano Lett.9(5), 1909–1915 (2009). [CrossRef] [PubMed]
  41. M. R. Dreher, W. G. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti, “Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers,” J. Natl. Cancer Inst.98(5), 335–344 (2006). [CrossRef] [PubMed]
  42. T. Y. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, “Two-photon luminescence properties of gold nanorods,” Biomed. Opt. Express4(4), 584–595 (2013). [CrossRef] [PubMed]
  43. Arnida, M. M. Janat-Amsbury, A. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e. V 77, 417-423 (2011).
  44. A. A. Manzoor, L. H. Lindner, C. D. Landon, J. Y. Park, A. J. Simnick, M. R. Dreher, S. Das, G. Hanna, W. Park, A. Chilkoti, G. A. Koning, T. L. M. ten Hagen, D. Needham, and M. W. Dewhirst, “Overcoming Limitations in Nanoparticle Drug Delivery: Triggered, Intravascular Release to Improve Drug Penetration into Tumors,” Cancer Res.72(21), 5566–5575 (2012). [CrossRef] [PubMed]
  45. H. M. Subhash, H. Xie, J. W. Smith, and O. J. T. McCarty, “Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography,” Opt. Lett.37(5), 981–983 (2012). [CrossRef] [PubMed]
  46. S. W. Jones, R. A. Roberts, G. R. Robbins, J. L. Perry, M. P. Kai, K. Chen, T. Bo, M. E. Napier, J. P. Y. Ting, J. M. Desimone, and J. E. Bear, “Nanoparticle clearance is governed by Th1/Th2 immunity and strain background,” J. Clin. Invest.123(7), 3061–3073 (2013). [CrossRef] [PubMed]
  47. G. Y. Guan, R. Reif, Z. H. Huang, and R. K. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt.16(12), 126003 (2011). [CrossRef] [PubMed]
  48. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express20(19), 21385–21399 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited