OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1768–1777

Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

Chia-Yuan Chang, Li-Chung Cheng, Hung-Wei Su, Yvonne Yuling Hu, Keng-Chi Cho, Wei-Chung Yen, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 6, pp. 1768-1777 (2014)
http://dx.doi.org/10.1364/BOE.5.001768


View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Microscopy

History
Original Manuscript: April 7, 2014
Revised Manuscript: May 2, 2014
Manuscript Accepted: May 5, 2014
Published: May 9, 2014

Citation
Chia-Yuan Chang, Li-Chung Cheng, Hung-Wei Su, Yvonne Yuling Hu, Keng-Chi Cho, Wei-Chung Yen, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen, "Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy," Biomed. Opt. Express 5, 1768-1777 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-6-1768


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  2. B. R. Masters and P. T. So, eds., Handbook of Biomedical Nonlinear Optical Microscopy (Oxford, 2008).
  3. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett.11(2), 94–96 (1986). [CrossRef] [PubMed]
  4. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  5. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  6. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express14(25), 12243–12254 (2006). [CrossRef] [PubMed]
  7. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  8. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express2(3), 696–704 (2011). [CrossRef] [PubMed]
  9. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express20(17), 19030–19038 (2012). [CrossRef] [PubMed]
  10. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “High-throughput fabrication of gray-level bio-microstructures via temporal focusing excitation and laser pulse control,” J. Biomed. Opt.18(7), 075004 (2013). [CrossRef]
  11. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012). [CrossRef] [PubMed]
  12. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  13. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. A Math Phys. Eng. Sci.365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  14. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol.20(1), 106–110 (2009). [CrossRef] [PubMed]
  15. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  16. C.-Y. Chung, K.-C. Cho, C.-C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt.45(15), 3409–3414 (2006). [CrossRef] [PubMed]
  17. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  18. C.-Y. Chang, B.-T. Ke, H.-W. Su, W.-C. Yen, and S.-J. Chen, “Easily implementable field programmable gate array-based adaptive optics system with state-space multichannel control,” Rev. Sci. Instrum.84(9), 095112 (2013). [CrossRef] [PubMed]
  19. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A.99(9), 5788–5792 (2002). [CrossRef] [PubMed]
  20. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010). [CrossRef] [PubMed]
  21. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19(10), 9419–9425 (2011). [CrossRef] [PubMed]
  22. H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express19(6), 4937–4948 (2011). [CrossRef] [PubMed]
  23. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010). [CrossRef] [PubMed]
  24. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett.36(6), 825–827 (2011). [CrossRef] [PubMed]
  25. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011). [CrossRef]
  26. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun.2, 447 (2011). [CrossRef] [PubMed]
  27. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010). [CrossRef] [PubMed]
  28. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express2(11), 3135–3149 (2011). [CrossRef] [PubMed]
  29. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express15(26), 18209–18219 (2007). [CrossRef] [PubMed]
  30. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  31. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express20(3), 2598–2612 (2012). [CrossRef] [PubMed]
  32. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and Multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005). [CrossRef] [PubMed]
  33. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett.22(23), 1793–1795 (1997). [CrossRef] [PubMed]
  34. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am.64(9), 1200–1210 (1974). [CrossRef]
  35. A. Straub, M. E. Durst, and C. Xu, “High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup,” Biomed. Opt. Express2(1), 80–88 (2011). [CrossRef] [PubMed]
  36. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express4(7), 995–1005 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited