OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1799–1811

Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver

Daniele Tosi, Edoardo Gino Macchi, Mario Gallati, Giovanni Braschi, Alfredo Cigada, Sandro Rossi, Gabriel Leen, and Elfed Lewis  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1799-1811 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A linearly chirped fiber Bragg grating (LCFBG) has been used as a temperature sensor for online monitoring of radiofrequency thermal ablation (RFTA). The LCFBG acts as a distributed sensor, with spatial resolution of 75 μm. A white-light setup that records the LCFBG spectrum estimates the temperature profile in real time. Three RFTA experiments have been performed ex-vivo on porcine liver measuring the radial temperature distribution during the heating process. The analysis of thermal maps quantifies the spatial heat distribution along the measurement axis and determines the ablation efficiency.

© 2014 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(170.1020) Medical optics and biotechnology : Ablation of tissue
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Therapeutic Applications

Original Manuscript: January 23, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 14, 2014
Published: May 13, 2014

Daniele Tosi, Edoardo Gino Macchi, Mario Gallati, Giovanni Braschi, Alfredo Cigada, Sandro Rossi, Gabriel Leen, and Elfed Lewis, "Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver," Biomed. Opt. Express 5, 1799-1811 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-X. Xu, X.-Y. Xie, M.-D. Lu, J.-W. Chen, X.-Y. Yin, Z.-F. Xu, and G.-J. Liu, “Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using microwave and radiofrequency ablation,” Clin. Radiol.59(1), 53–61 (2004). [CrossRef] [PubMed]
  2. B. J. Wood, J. R. Ramkaransingh, T. Fojo, M. M. Walther, and S. K. Libutti, “Percutaneous tumor ablation with radiofrequency,” Cancer94(2), 443–451 (2002). [CrossRef] [PubMed]
  3. S. N. Goldberg, G. S. Gazelle, and P. R. Mueller, “Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance,” Am. J. Roentgenol.174(2), 323–331 (2000). [CrossRef] [PubMed]
  4. J. P. McGhana and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am. J. Roentgenol.176(1), 3–16 (2001). [CrossRef] [PubMed]
  5. S. A. Curley, “Radiofrequency ablation of malignant liver tumors,” Ann. Surg. Oncol.10(4), 338–347 (2003). [CrossRef] [PubMed]
  6. S. Padma, J. B. Martinie, and D. A. Iannitti, “Liver tumor ablation: percutaneous and open approaches,” J. Surg. Oncol.100(8), 619–634 (2009). [CrossRef] [PubMed]
  7. L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L. Cova, E. F. Halpern, and G. S. Gazelle, “Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients,” Radiology221(1), 159–166 (2001). [CrossRef] [PubMed]
  8. P. L. Pereira, “Actual role of radiofrequency ablation of liver metastases,” Eur. Radiol.17(8), 2062–2070 (2007). [CrossRef] [PubMed]
  9. K. Ogan, W. W. Roberts, D. M. Wilhelm, L. Bonnell, D. Leiner, G. Lindberg, L. R. Kavoussi, and J. A. Cadeddu, “Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins,” Urology62(1), 146–151 (2003). [CrossRef] [PubMed]
  10. E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley Interscience, New York, 1991).
  11. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications (Artech House, 1999).
  12. V. Mishra, N. Singh, U. Tiwari, and P. Kapur, “Fiber grating sensors in medicine: current and emerging applications,” Sens. Actuators A Phys.167(2), 279–290 (2011). [CrossRef]
  13. F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel)13(10), 14105–14120 (2013). [CrossRef] [PubMed]
  14. P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during laser-induced thermotherapy: an overview,” Int. J. Hyperthermia29(7), 609–619 (2013). [CrossRef] [PubMed]
  15. A. Micco, G. Quero, A. Crescitelli, A. Ricciardi, and A. Cusano, “Ultracompact optical fiber Fabry-Perot interferometer based on in-line integrated sub-micron film,” Proc. SPIE8794, 87940P (2013). [CrossRef]
  16. Luna Inc, http://lunainc.com/obr4600ts .
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  18. Y. Okabe, R. Tsuji, and N. Takeda, “Application of chiped fiber Bragg grating sensors for identification of crack location in composites,” Compos., Part A Appl. Sci. Manuf.35(1), 59–65 (2004). [CrossRef]
  19. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited