OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1812–1821

Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study

Chang-Hee Han, Hyuna Song, Yong-Guk Kang, Beop-Min Kim, and Chang-Hwan Im  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 6, pp. 1812-1821 (2014)
http://dx.doi.org/10.1364/BOE.5.001812


View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the present study, we monitored hemodynamic responses in rat brains during transcranial direct current stimulation (tDCS) using functional near-infrared spectroscopy (fNIRS). Seven rats received transcranial anodal stimulation with 200 μA direct current (DC) on their right barrel cortex for 10 min. The concentration changes of oxygenated hemoglobin (oxy-Hb) were continuously monitored during stimulation (10 min) and after stimulation (20 min). The trend of hemodynamic response changes was modeled using linear regression, and the relationship between incremental and decremental rates of oxy-Hb was investigated by correlation analysis. Our results showed that the oxy-Hb concentration was almost linearly increased and decreased during and after stimulation, respectively. In addition, a significant negative correlation (p < 0.05) was found between the rate of increase of oxy-Hb during stimulation and the rate of decrease of oxy-Hb after stimulation, indicating that the recovery time after tDCS may not depend on the total amount of hemodynamic changes in the stimulated brain area. Our results also demonstrated considerable individual variability in the rate of change of hemodynamic responses even with the same direct current dose to identical brain regions. This suggests that individual differences in tDCS after-effects may originate from intrinsic differences in the speed of DC stimulation “uptake” rather than differences in the total capacity of DC uptake, and thus the stimulation parameters may need to be customized for each individual in order to maximize tDCS after-effects.

© 2014 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: March 5, 2014
Revised Manuscript: April 18, 2014
Manuscript Accepted: April 21, 2014
Published: May 13, 2014

Citation
Chang-Hee Han, Hyuna Song, Yong-Guk Kang, Beop-Min Kim, and Chang-Hwan Im, "Hemodynamic responses in rat brain during transcranial direct current stimulation: a functional near-infrared spectroscopy study," Biomed. Opt. Express 5, 1812-1821 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-6-1812


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol.527(3), 633–639 (2000). [CrossRef] [PubMed]
  2. A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Invest. Ophthalmol. Vis. Sci.45, 702–707 (2004).
  3. F. Fregni, P. S. Boggio, M. Nitsche, and A. Pascual-Leone, “Transcranial direct current stimulation,” Br. J. Psychiatry186(5), 446–447 (2005). [CrossRef] [PubMed]
  4. T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annu. Rev. Biomed. Eng.9(1), 527–565 (2007). [CrossRef] [PubMed]
  5. M. A. Nitsche, L. G. Cohen, E. M. Wassermann, A. Priori, N. Lang, A. Antal, W. Paulus, F. Hummel, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulat.1(3), 206–223 (2008). [CrossRef] [PubMed]
  6. A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clin. Neurophysiol.114(4), 589–595 (2003). [CrossRef] [PubMed]
  7. J. A. Williams, M. Imamura, and F. Fregni, “Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine,” J. Rehabil. Med.41(5), 305–311 (2009). [CrossRef] [PubMed]
  8. P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clin. Neurophysiol.117(4), 845–850 (2006). [CrossRef] [PubMed]
  9. M. A. Nitsche, P. S. Boggio, F. Fregni, and A. Pascual-Leone, “Treatment of depression with transcranial direct current stimulation (tDCS): a review,” Exp. Neurol.219(1), 14–19 (2009). [CrossRef] [PubMed]
  10. F. Fregni, S. Freedman, and A. Pascual-Leone, “Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques,” Lancet Neurol.6(2), 188–191 (2007). [CrossRef] [PubMed]
  11. A. Mignon, V. Laudenbach, F. Guischard, A. Limoge, J.-M. Desmonts, and J. Mantz, “Transcutaneous cranial electrical stimulation (Limoge’s currents) decreases early buprenorphine analgesic requirements after abdominal surgery,” Anesth. Analg.83(4), 771–775 (1996). [PubMed]
  12. P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restor. Neurol. Neurosci.25(2), 123–129 (2007). [PubMed]
  13. P. S. Boggio, R. Ferrucci, S. P. Rigonatti, P. Covre, M. Nitsche, A. Pascual-Leone, and F. Fregni, “Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease,” J. Neurol. Sci.249(1), 31–38 (2006). [CrossRef] [PubMed]
  14. B. A. Coffman, M. C. Trumbo, and V. P. Clark, “Enhancement of object detection with transcranial direct current stimulation is associated with increased attention,” BMC Neurosci.13(1), 108 (2012). [CrossRef] [PubMed]
  15. T. U. Hauser, S. Rotzer, R. H. Grabner, S. Mérillat, and L. Jäncke, “Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS),” Front Hum. Neurosci.7, 244 (2013). [CrossRef] [PubMed]
  16. Y. H. Kwon, M.-H. Ko, S. H. Ahn, Y.-H. Kim, J. C. Song, C.-H. Lee, M. C. Chang, and S. H. Jang, “Primary motor cortex activation by transcranial direct current stimulation in the human brain,” Neurosci. Lett.435(1), 56–59 (2008). [CrossRef] [PubMed]
  17. A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage49(3), 2304–2310 (2010). [CrossRef] [PubMed]
  18. D. Wachter, A. Wrede, W. Schulz-Schaeffer, A. Taghizadeh-Waghefi, M. A. Nitsche, A. Kutschenko, V. Rohde, and D. Liebetanz, “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Exp. Neurol.227(2), 322–327 (2011). [CrossRef] [PubMed]
  19. X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” Neuroimage58(1), 26–33 (2011). [CrossRef] [PubMed]
  20. Y.-J. Jung, J.-H. Kim, D. Kim, and C.-H. Im, “An image-guided transcranial direct current stimulation system: a pilot phantom study,” Physiol. Meas.34(8), 937–950 (2013). [CrossRef] [PubMed]
  21. D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clin. Neurophysiol.120(6), 1161–1167 (2009). [CrossRef] [PubMed]
  22. P. Minhas, A. Datta, and M. Bikson, “Cutaneous perception during tDCS: role of electrode shape and sponge salinity,” Clin. Neurophysiol.122(4), 637–638 (2011). [CrossRef] [PubMed]
  23. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition (Access Online via Elsevier, 2006).
  24. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage18(4), 865–879 (2003). [CrossRef] [PubMed]
  25. Q. L. Yao, H.-Y. Zhang, B. B. Nie, F. Fang, Y. Jiao, and G.-J. Teng, “MRI assessment of amplitude of low-frequency fluctuation in rat brains with acute cerebral ischemic stroke,” Neurosci. Lett.509(1), 22–26 (2012). [CrossRef] [PubMed]
  26. J. Tanabe, D. Miller, J. Tregellas, R. Freedman, and F. G. Meyer, “Comparison of detrending methods for optimal fMRI preprocessing,” Neuroimage15(4), 902–907 (2002). [CrossRef] [PubMed]
  27. S. Slobounov, J. Johnston, H. Chiang, and W. Ray, “Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment,” Clin. Neurophysiol.113(7), 1125–1135 (2002). [CrossRef] [PubMed]
  28. C. Calmels, M. Hars, P. Holmes, G. Jarry, and C. J. Stam, “Non-linear EEG synchronization during observation and execution of simple and complex sequential finger movements,” Exp. Brain Res.190(4), 389–400 (2008). [CrossRef] [PubMed]
  29. H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt.4(4), 418–423 (1999). [CrossRef] [PubMed]
  30. V. G. Duffy, Brain Advances in Human Aspects of Healthcare (CRC Press, 2012), Chap. 53.
  31. C. K. Loo, A. Alonzo, D. Martin, P. B. Mitchell, V. Galvez, and P. Sachdev, “Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial,” Br. J. Psychiatry200(1), 52–59 (2012). [CrossRef] [PubMed]
  32. K. Weltman and M. Lavidor, “Modulating lexical and semantic processing by transcranial direct current stimulation,” Exp. Brain Res.226(1), 121–135 (2013). [CrossRef] [PubMed]
  33. Á. Foerster, S. Rocha, C. Wiesiolek, A. P. Chagas, G. Machado, E. Silva, F. Fregni, and K. Monte-Silva, “Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning,” Eur. J. Neurosci.37(5), 786–794 (2013). [CrossRef] [PubMed]
  34. U. Palm, C. Schiller, Z. Fintescu, M. Obermeier, D. Keeser, E. Reisinger, O. Pogarell, M. A. Nitsche, H.-J. Möller, and F. Padberg, “Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study,” Brain Stimulat.5(3), 242–251 (2012). [CrossRef] [PubMed]
  35. A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, and M. Bikson, “Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad,” Brain Stimulat.2(4), 201–207 (2009). [CrossRef] [PubMed]
  36. M. E. Mendonca, M. B. Santana, A. F. Baptista, A. Datta, M. Bikson, F. Fregni, and C. P. Araujo, “Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models,” J. Pain12(5), 610–617 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited