OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1839–1860

Reconstruction of localized fluorescent target from multi-view continuous-wave surface images of small animal with lp sparsity regularization

Shinpei Okawa, Tatsuya Ikehara, Ichiro Oda, and Yukio Yamada  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1839-1860 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence diffuse optical tomography using a multi-view continuous-wave and non-contact measurement system and an algorithm incorporating the lp (0 < p ≤ 1) sparsity regularization reconstructs a localized fluorescent target in a small animal. The measurement system provides a total of 25 fluorescence surface 2D-images of an object, which are acquired by a CCD camera from five different angles of view with excitation from five different angles. Fluorescence surface emissions from five different angles of view are simultaneously imaged on the CCD sensor, thus leading to fast acquisition of the 25 images within three minutes. The distributions of the fluorophore are reconstructed by solving the inverse problem based on the photon diffusion equations. In the reconstruction process incorporating the lp sparsity regularization, the regularization term is reformulated as a differentiable function for gradient-based non-linear optimization. Numerical simulations and phantom experiments show that the use of the lp sparsity regularization improves the localization of the target and quantitativeness of the fluorophore concentration. A mouse experiment demonstrates that a localized fluorescent target in a mouse is successfully reconstructed.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: March 17, 2014
Revised Manuscript: May 5, 2014
Manuscript Accepted: May 6, 2014
Published: May 19, 2014

Shinpei Okawa, Tatsuya Ikehara, Ichiro Oda, and Yukio Yamada, "Reconstruction of localized fluorescent target from multi-view continuous-wave surface images of small animal with lp sparsity regularization," Biomed. Opt. Express 5, 1839-1860 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, C.-H. Yung, C. Bremerand, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–760 (2002). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  3. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob.15, R41–R93 (1999). [CrossRef]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005). [CrossRef] [PubMed]
  5. R. Weissleder, “Molecular imaging in cancer,” Science321, 1168–1171 (2006). [CrossRef]
  6. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000). [CrossRef]
  7. K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method,” Phys. Med. Biol.47, 3387–3405 (2002). [CrossRef] [PubMed]
  8. D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium,” Appl. Opt.36(10), 2260–2272 (1997). [CrossRef] [PubMed]
  9. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30, 901–911 (2003). [CrossRef] [PubMed]
  10. N. C. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007). [CrossRef] [PubMed]
  11. T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol.50, 2503–2517 (2005). [CrossRef] [PubMed]
  12. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography for passive motor evoked responses in the neonate,” NueroImage30, 521–528 (2006). [CrossRef]
  13. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47, 4155–4166 (2002). [CrossRef] [PubMed]
  14. B. W. Pogue, T. O. McBride, J. Prewitt, U. Lösterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38(13), 2950–2961 (1999). [CrossRef]
  15. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005). [CrossRef] [PubMed]
  16. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express15(13), 8043–8058 (2007). [CrossRef] [PubMed]
  17. A. Douiri, M. Schweiger, J. Riley, and S. R. Arridge, “Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information,” Meas. Sci. Tech.18, 87–95 (2007). [CrossRef]
  18. P. Hiltunen, D. Calvetti, and E. Somersalo, “An adaptive smoothness regularization algorithm for optical tomography,” Opt. Express16(24), 19957–19977 (2008). [CrossRef] [PubMed]
  19. C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009). [CrossRef]
  20. N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express, 15(21), 13695–13708 (2007). [CrossRef] [PubMed]
  21. T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express20(18), 20427–20446 (2012). [CrossRef] [PubMed]
  22. P. Xu, Y. Tian, H. Chen, and D. Yao, “Lp Norm Iterative Sparse Solution for EEG Source Localization,” IEEE Trans. Biomed. Eng.54(3), 400–409 (2007). [CrossRef] [PubMed]
  23. P. M. Shankar and M. A. Neifeld, “Sparsity constrained regularization for multiframe image restoration,” J. Opt. Soc. Am. A25(5), 1199–1214 (2008). [CrossRef]
  24. M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt.49(19), 3741–3747 (2010). [CrossRef] [PubMed]
  25. D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma, and J. Tian, “Efficient reconstruction method for L1 regularization in fluorescence molecular tomography,” Appl. Opt49(36), 6930–6937 (2010). [CrossRef] [PubMed]
  26. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express18(8), 8630–8646 (2010). [CrossRef] [PubMed]
  27. H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of florescent molecular tomography,” Appl. Opt.51(7), 975–986 (2012). [CrossRef] [PubMed]
  28. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46(10), 1679–1685 (2007). [CrossRef] [PubMed]
  29. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with aparse A priori information,” Opt. Express17(10), 8062–8088 (2009). [CrossRef] [PubMed]
  30. S. Okawa and Y. Yamada, “Reconstruction of fluorescence/bioluminescence sources in biological medium with spatial filter,” Opt. Express18(12), 13151–13172 (2010). [CrossRef] [PubMed]
  31. Z. He, A. Cichocki, R. Zdunek, and S. Xie, “Improved FOCCUS method with conjugate gradient iterations,” IEEE Trans. Signal Process.57(1), 399–404 (2009). [CrossRef]
  32. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express2(12), 3334–3348 (2011). [CrossRef] [PubMed]
  33. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse model in optical tomography,” J. Math. Imaging Vis.3, 263–283 (1993). [CrossRef]
  34. C. R. Vogel, Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002). [CrossRef]
  35. S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express12(6), 213–226 (1998). [CrossRef]
  36. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26, 2166–2185 (1990). [CrossRef]
  37. A. B. Milstein, S. Oh, K. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003). [CrossRef] [PubMed]
  38. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express, 16(19), 15268–15285 (2008). [CrossRef] [PubMed]
  39. B. Toczylowska, E. Zieminska, G. Goch, D. Milej, A. Gerega, and A. Liebert, “Neurotoxic effects of indocyanine green-cerebellar granule cell culture viability study,” Biomed. Opt. Express, 5(3), 800–816 (2014). [CrossRef] [PubMed]
  40. J. Barkhausen, W. Ebert, J. F. Debatin, and H.-J. Weinmann, “Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits,” J. Am. Coll. Cardiol.39(8), 1392–1398 (2002). [CrossRef] [PubMed]
  41. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express, 12(22), 5402–5417 (2004). [CrossRef] [PubMed]
  42. M. Huang and Q. Zhu, “Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information,” Appl. Opt.43(8), 1654–1662 (2006). [CrossRef]
  43. V. C. Kavuri, Z.-J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization n diffuse optical tomography,” Biomed. Opt. Express, 3(5), 943–957 (2012). [CrossRef] [PubMed]
  44. J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, “Joint L1 and total variation regularization for fluorescence molecular tomography,” Phys. Med. Biol.57, 1459–1476 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited