OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1861–1876

Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification

Jun Zhang, Duofang Chen, Jimin Liang, Huadan Xue, Jing Lei, Qin Wang, Dongmei Chen, Ming Meng, Zhengyu Jin, and Jie Tian  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1861-1876 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Multimodal Imaging

Original Manuscript: February 21, 2014
Revised Manuscript: May 11, 2014
Manuscript Accepted: May 12, 2014
Published: May 20, 2014

Jun Zhang, Duofang Chen, Jimin Liang, Huadan Xue, Jing Lei, Qin Wang, Dongmei Chen, Ming Meng, Zhengyu Jin, and Jie Tian, "Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification," Biomed. Opt. Express 5, 1861-1876 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Baker, “Whole-animal imaging: The whole picture,” Nature463, 977–980 (2010). [CrossRef] [PubMed]
  2. F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE Trans. Med. Imaging30, 1265–1273 (2011). [CrossRef] [PubMed]
  3. T. Beyer, D. W. Townsend, T. Brun, P. E. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L. Byars, R. Nutt, and , “A combined pet/ct scanner for clinical oncology,” J. Nucl. Med.41, 1369–1379 (2000). [PubMed]
  4. O. Gaemperli, T. Schepis, I. Valenta, L. Husmann, H. Scheffel, V. Duerst, F. R. Eberli, T. F. Luscher, H. Alkadhi, and P. A. Kaufmann, “Cardiac image fusion from stand-alone spect and ct: clinical experience,” J. Nucl. Med.48, 696–703 (2007). [CrossRef] [PubMed]
  5. S. R. Cherry, “Multimodality imaging: Beyond pet/ct and spect/ct,” in Seminars in Nuclear Medicine,, vol. 39 (Elsevier, 2009), vol. 39, pp. 348–353. [CrossRef]
  6. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Rocken, R. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, “Simultaneous pet-mri: a new approach for functional and morphological imaging,” Nat. Med.14, 459–465 (2008). [CrossRef] [PubMed]
  7. B. J. Pichler, A. Kolb, T. Nägele, and H.-P. Schlemmer, “Pet/mri: paving the way for the next generation of clinical multimodality imaging applications,” J. Nucl. Med51, 333–336 (2010). [CrossRef] [PubMed]
  8. O. Ratib and T. Beyer, “Whole-body hybrid pet/mri: ready for clinical use?” Eur. J. Nucl. Med. Mol. Imaging38, 992–995 (2011). [CrossRef] [PubMed]
  9. K. Licha and C. Olbrich, “Optical imaging in drug discovery and diagnostic applications,” Adv. Drug Delivery Rev.57, 1087–1108 (2005). [CrossRef]
  10. H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, and J. V. Frangioni, “Targeted zwitterionic near-infrared fluorophores for improved optical imaging,” Nat. Biotechnol.31, 148–153 (2013). [CrossRef] [PubMed]
  11. S. Jiang, M. K. Gnanasammandhan, and Y. Zhang, “Optical imaging-guided cancer therapy with fluorescent nanoparticles,” J. R. Soc., Interface7, 3–18 (2010). [CrossRef]
  12. S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol.30, 71–79 (2012). [CrossRef]
  13. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discovery7, 591–607 (2008). [CrossRef]
  14. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, and V. Ntziachristos, “Fmt-xct: in vivo animal studies with hybrid fluorescence molecular tomography-x-ray computed tomography,” Nat. Meth.9, 615–620 (2012). [CrossRef]
  15. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express14, 7801–7809 (2006). [CrossRef] [PubMed]
  16. J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body cerenkov luminescence tomography with the finite element sp3 method,” Ann. Biomed. Eng.39, 1728–1735 (2011). [CrossRef] [PubMed]
  17. Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, “Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation,” Phys. Med. Biol.52, 4497 (2007). [CrossRef] [PubMed]
  18. J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, and , “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express18, 13102 (2010). [CrossRef] [PubMed]
  19. J. Tian, K. Liu, Y. Lu, C. Qin, X. Yang, S. Zhu, D. Han, J. Feng, X. Ma, and Z. Chang, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express18, 20988–21002 (2010). [CrossRef] [PubMed]
  20. M. A. Naser and M. S. Patterson, “Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region,” Biomed. Opt. Express2, 3179–3193 (2011). [CrossRef] [PubMed]
  21. Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of lp-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express3, 2916–2936 (2012). [CrossRef] [PubMed]
  22. K. Brindle, “New approaches for imaging tumour responses to treatment,” Nat. Rev. Cancer8, 94–107 (2008). [CrossRef] [PubMed]
  23. M. Allard, D. Côté, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt.12, 034018 (2007). [CrossRef] [PubMed]
  24. M. B. Unlu, Y. Lin, O. Birgul, O. Nalcioglu, and G. Gulsen, “Simultaneous in vivo dynamic magnetic resonance-diffuse optical tomography for small animal imaging,” J. Biomed. Opt.13, 060501 (2008). [CrossRef]
  25. R. Gong, G. Wang, X. Cheng, and W. Han, “A novel approach for studies of multispectral bioluminescence tomography,” Numerische Mathematik115, 553–583 (2010). [CrossRef]
  26. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and , “Practical reconstruction method for bioluminescence tomography,” Opt. Express13, 6756–6771 (2005). [CrossRef] [PubMed]
  27. V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “Concurrent mri and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Nat. Acad. Sci. USA97, 2767–2772 (2000). [CrossRef] [PubMed]
  28. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Nat. Acad. Sci. USA103, 8828–8833 (2006). [CrossRef] [PubMed]
  29. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (nir) tomography breast image reconstruction with a priori structural information from mri: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron.9, 199–209 (2003). [CrossRef]
  30. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to mri,” Med. Phys.32, 1128 (2005). [CrossRef] [PubMed]
  31. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance–coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79, 064302 (2008). [CrossRef]
  32. S. C. Davis, K. S. Samkoe, K. M. Tichauer, K. J. Sexton, J. R. Gunn, S. J. Deharvengt, T. Hasan, and B. W. Pogue, “Dynamic dual-tracer mri-guided fluorescence tomography to quantify receptor density in vivo,” Proc. Nat. Acad. Sci. USA110, 9025–9030 (2013). [CrossRef] [PubMed]
  33. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging2006, 58601 (2006). [CrossRef] [PubMed]
  34. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50, 5421 (2005). [CrossRef] [PubMed]
  35. E. M. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics1, 526–530 (2007). [CrossRef]
  36. S. Arridge, M. Schweiger, M. Hiraoka, and D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20, 299 (1993). [CrossRef] [PubMed]
  37. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8, 757–761 (2002). [CrossRef] [PubMed]
  38. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging23, 492–500 (2004). [CrossRef] [PubMed]
  39. G. S. Abdoulaev and A. H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging12, 594–601 (2003). [CrossRef]
  40. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numerical Methods Engineering65, 383–405 (2006). [CrossRef]
  41. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys.220, 441–470 (2006). [CrossRef]
  42. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15, R41 (1999). [CrossRef]
  43. A. J. Welch and M. J. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2010).
  44. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt.40, 588–600 (2001). [CrossRef]
  45. M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22, 1779 (1995). [CrossRef] [PubMed]
  46. J. J. Duderstadt and L. J. Hamilton, “Nuclear reactor analysis,” (1976).
  47. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express14, 8211–8223 (2006). [CrossRef] [PubMed]
  48. R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-fem for bioluminescence tomography,” Opt. Express17, 14481–14494 (2009). [CrossRef] [PubMed]
  49. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3d multispectral bioluminescence tomography,” Phys. Med. Biol.53, 3921 (2008). [CrossRef] [PubMed]
  50. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys.31, 2289 (2004). [CrossRef] [PubMed]
  51. A. X. Cong and G. Wang, “Multispectral bioluminescence tomography: methodology and simulation,” Int. J. Biomed. Imaging2006, 57614 (2006). [CrossRef] [PubMed]
  52. B. Zhang, X. Yang, C. Qin, D. Liu, S. Zhu, J. Feng, L. Sun, K. Liu, D. Han, X. Ma, and , “A trust region method in adaptive finite element framework for bioluminescence tomography,” Opt. Express18, 6477–6491 (2010). [CrossRef] [PubMed]
  53. J. Feng, C. Qin, K. Jia, S. Zhu, X. Yang, and J. Tian, “Bioluminescence tomography imaging in vivo: recent advances,” IEEE J. Sel. Top. Quantum Electron.18, 1394–1402 (2012). [CrossRef]
  54. P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence33, 898–916 (2011). [CrossRef]
  55. S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular optical simulation environment (mose): A platform for the simulation of light propagation in turbid media,” PloS one8, e61304 (2013). [CrossRef] [PubMed]
  56. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-pet (opet) system: a computer simulation feasibility study,” Phys. Med. Biol.50, 4225 (2005). [CrossRef] [PubMed]
  57. D. E. Jenkins, Y. Oei, Y. S. Hornig, S.-F. Yu, J. Dusich, T. Purchio, and P. R. Contag, “Bioluminescent imaging (bli) to improve and refine traditional murine models of tumor growth and metastasis,” Clin. Exp. Metastasis20, 733–744 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited