OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1886–1894

Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins

Abhay Kotnala and Reuven Gordon  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 6, pp. 1886-1894 (2014)
http://dx.doi.org/10.1364/BOE.5.001886


View Full Text Article

Enhanced HTML    Acrobat PDF (1254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we report on the use of double-nanohole (DNH) optical tweezers as a label-free and free-solution single-molecule probe for protein–DNA interactions. Using this approach, we demonstrate the unzipping of individual 10 base pair DNA-hairpins, and quantify how tumor suppressor p53 protein delays the unzipping. From the Arrhenius behavior, we find the energy barrier to unzipping introduced by p53 to be 2 × 10−20 J, whereas cys135ser mutant p53 does not show suppression of unzipping, which gives clues to its functional inability to suppress tumor growth. This transformative approach to single molecule analysis allows for ultra-sensitive detection and quantification of protein–DNA interactions to revolutionize the fight against genetic diseases.

© 2014 Optical Society of America

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: March 13, 2014
Revised Manuscript: May 17, 2014
Manuscript Accepted: May 19, 2014
Published: May 21, 2014

Citation
Abhay Kotnala and Reuven Gordon, "Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins," Biomed. Opt. Express 5, 1886-1894 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-6-1886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008). [CrossRef] [PubMed]
  2. S. J. Koch, A. Shundrovsky, B. C. Jantzen, and M. D. Wang, “Probing protein-DNA interactions by unzipping a single DNA double helix,” Biophys. J.83(2), 1098–1105 (2002). [CrossRef] [PubMed]
  3. L. Shokri, I. Rouzina, and M. C. Williams, “Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA,” Phys. Biol.6(2), 025002 (2009). [CrossRef] [PubMed]
  4. J. W. Shaevitz, E. A. Abbondanzieri, R. Landick, and S. M. Block, “Backtracking by single RNA polymerase molecules observed at near-base-pair resolution,” Nature426(6967), 684–687 (2003). [CrossRef] [PubMed]
  5. I. Heller, T. P. Hoekstra, G. A. King, E. J. G. Peterman, and G. J. L. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev.114(6), 3087–3119 (2014). [CrossRef] [PubMed]
  6. G. Farge, N. Laurens, O. D. Broekmans, S. M. van den Wildenberg, L. C. Dekker, M. Gaspari, C. M. Gustafsson, E. J. Peterman, M. Falkenberg, and G. J. Wuite, “Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A,” Nat.Commun.3, 1013 (2012). [CrossRef] [PubMed]
  7. P. R. Bianco, L. R. Brewer, M. Corzett, R. Balhorn, Y. Yeh, S. C. Kowalczykowski, and R. J. Baskin, “Processive translocation and DNA unwinding by individual RecBCD enzyme molecules,” Nature409(6818), 374–378 (2001). [CrossRef] [PubMed]
  8. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008). [CrossRef] [PubMed]
  9. K. R. Chaurasiya, T. Paramanathan, M. J. McCauley, and M. C. Williams, “Biophysical characterization of DNA binding from single molecule force measurements,” Phys. Life Rev.7(3), 299–341 (2010). [CrossRef] [PubMed]
  10. K. Raghunathan, J. N. Milstein, and J. Meiners, “Stretching short sequences of DNA with constant force axial optical tweezers,” J. Vis. Exper.56, 3405 (2011).
  11. Y. F. Chen, G. A. Blab, and J. C. Meiners, “Stretching submicron biomolecules with constant-force axial optical tweezers,” Biophys. J.96(11), 4701–4708 (2009). [CrossRef] [PubMed]
  12. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J.84(2), 1308–1316 (2003). [CrossRef] [PubMed]
  13. I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods10(9), 910–916 (2013). [CrossRef] [PubMed]
  14. M. A. Dijk, L. C. Kapitein, J. Mameren, C. F. Schmidt, and E. J. Peterman, “Combining optical trapping and single-molecule fluorescence spectroscopy: Enhanced photobleaching of fluorophores,” J. Phys. Chem. B108(20), 6479–6484 (2004). [CrossRef] [PubMed]
  15. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol.185(7), 1135–1148 (2009). [CrossRef] [PubMed]
  16. S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science318(5848), 279–283 (2007). [CrossRef] [PubMed]
  17. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Giant optical nonlinearity of a single plasmonic nanostructure,” Opt. Express21(12), 13896–13905 (2013). [CrossRef] [PubMed]
  18. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett.12(1), 402–406 (2012). [CrossRef] [PubMed]
  19. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  20. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett.14(2), 853–856 (2014). [CrossRef] [PubMed]
  21. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009). [CrossRef]
  22. A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab Chip13(20), 4142–4146 (2013). [CrossRef] [PubMed]
  23. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  24. D. B. Veprintsev and A. R. Fersht, “Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA,” Nucleic Acids Res.36(5), 1589–1598 (2008). [CrossRef] [PubMed]
  25. T. Göhler, M. Reimann, D. Cherny, K. Walter, G. Warnecke, E. Kim, and W. Deppert, “Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain,” J. Biol. Chem.277(43), 41192–41203 (2002). [CrossRef] [PubMed]
  26. J. Buzek, L. Latonen, S. Kurki, K. Peltonen, and M. Laiho, “Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277,” Nucleic Acids Res.30(11), 2340–2348 (2002). [CrossRef] [PubMed]
  27. M. A. Hall, A. Shundrovsky, L. Bai, R. M. Fulbright, J. T. Lis, and M. D. Wang, “High-resolution dynamic mapping of histone-DNA interactions in a nucleosome,” Nat. Struct. Mol. Biol.16(2), 124–129 (2009). [CrossRef] [PubMed]
  28. Y. Chen, X. Zhang, A. C. Dantas Machado, Y. Ding, Z. Chen, P. Z. Qin, R. Rohs, and L. Chen, “Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion,” Nucleic Acids Res.41(17), 8368–8376 (2013). [CrossRef] [PubMed]
  29. S. Lukman, D. P. Lane, and C. S. Verma, “Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics,” PLoS ONE8(11), e80221 (2013). [CrossRef] [PubMed]
  30. R. Melero, S. Rajagopalan, M. Lázaro, A. C. Joerger, T. Brandt, D. B. Veprintsev, G. Lasso, D. Gil, S. H. Scheres, J. M. Carazo, A. R. Fersht, and M. Valle, “Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA,” Proc. Natl. Acad. Sci. U.S.A.108(2), 557–562 (2011). [CrossRef] [PubMed]
  31. D. I. Cherny, G. Striker, V. Subramaniam, S. D. Jett, E. Palecek, and T. M. Jovin, “DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy,” J. Mol. Biol.294(4), 1015–1026 (1999). [CrossRef] [PubMed]
  32. M. Ferrone, F. Perrone, E. Tamborini, M. S. Paneni, M. Fermeglia, S. Suardi, E. Pastore, D. Delia, M. A. Pierotti, S. Pricl, and S. Pilotti, “Functional analysis and molecular modeling show a preserved wild-type activity of p53(C238Y),” Mol. Cancer Ther.5(6), 1467–1473 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited