OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1913–1925

Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium: experimental validation

U. A. Gamm, C. L. Hoy, F. van Leeuwen - van Zaane, H. J. C. M. Sterenborg, S. C. Kanick, D. J. Robinson, and A. Amelink  »View Author Affiliations


Biomedical Optics Express, Vol. 5, Issue 6, pp. 1913-1925 (2014)
http://dx.doi.org/10.1364/BOE.5.001913


View Full Text Article

Enhanced HTML    Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The detailed mechanisms associated with the influence of scattering and absorption properties on the fluorescence intensity sampled by a single optical fiber have recently been elucidated based on Monte Carlo simulated data. Here we develop an experimental single fiber fluorescence (SFF) spectroscopy setup and validate the Monte Carlo data and semi-empirical model equation that describes the SFF signal as a function of scattering. We present a calibration procedure that corrects the SFF signal for all system-related, wavelength dependent transmission efficiencies to yield an absolute value of intrinsic fluorescence. The validity of the Monte Carlo data and semi-empirical model is demonstrated using a set of fluorescent phantoms with varying concentrations of Intralipid to vary the scattering properties, yielding a wide range of reduced scattering coefficients (μ′s = 0–7 mm−1). We also introduce a small modification to the model to account for the case of μ′s = 0 mm−1 and show its relation to the experimental, simulated and theoretically calculated value of SFF intensity in the absence of scattering. Finally, we show that our method is also accurate in the presence of absorbers by performing measurements on phantoms containing red blood cells and correcting for their absorption properties.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: December 17, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 10, 2014
Published: May 22, 2014

Citation
U. A. Gamm, C. L. Hoy, F. van Leeuwen - van Zaane, H. J. C. M. Sterenborg, S. C. Kanick, D. J. Robinson, and A. Amelink, "Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium: experimental validation," Biomed. Opt. Express 5, 1913-1925 (2014)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-5-6-1913


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Quincy Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20, 119–131 (2009). [CrossRef] [PubMed]
  2. C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer122, 363–371 (2008). [CrossRef]
  3. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Laser Surg. Med.34, 25–38 (2004). [CrossRef]
  4. D. J Robinson, M. B. Karakullukcu, B. Kruijt, S. C. Kanick, R. P. L. van Veen, A. Amelink, H. J. C. M. Sterenborg, M. J. H. Witjes, and I. B. Tan, “Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors,” IEEE J. Sel. Top. Quantum Electron.16, 854–862 (2010). [CrossRef]
  5. B. Karakullukcu, S. C. Kanick, J. B. Aans, H. J. C. M. Sterenborg, I. B. Tan, A. Amelink, and D. J. Robinson, “Clinical feasibility of monitoring m-THPC mediated photodynamic therapy by means of fluorescence differential path-length spectroscopy,” J. Biophotonics4, 740–751 (2011). [CrossRef] [PubMed]
  6. T. M. Baran and T. H. Foster, “Recovery of Intrinsic Fluorescence From Single-Point Interstitial Measurements for Quantification of Doxorubicin Concentration,” Laser Surg. Med.45, 542–550 (2013).
  7. J. Wu, M. S. Feld, and R. P Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt.19, 3585–3595 (1993). [CrossRef]
  8. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt.35, 1780–1792 (1996). [CrossRef] [PubMed]
  9. M. G. Mller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt.40, 4633–4646 (2001). [CrossRef]
  10. Q. Zhang, M. G. Mller, J. Wu, and M. S. Feld, “Turbidity-free fluorescence spectroscopy of biological tissue,” Opt. Lett.25, 1451–1453 (2000). [CrossRef]
  11. J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model,” Appl. Opt.44, 1917–1933 (2005). [CrossRef] [PubMed]
  12. G. M. Palmer and N. Ramanujam, “Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt.13, 024017 (2008). [CrossRef] [PubMed]
  13. G. M. Palmer, R. J. Viola, T. Schroeder, P. S. Yarmolenko, M. W. Dewhirst, and N. Ramanujam, “Quantitative diffuse reflectance and fluorescence spectroscopy: tool to monitor tumor physiology in vivo,” J. Biomed. Opt.14, 024010 (2009). [CrossRef] [PubMed]
  14. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17, 17502–17516 (2009). [CrossRef] [PubMed]
  15. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15, 067006 (2010). [CrossRef]
  16. J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem. Photobiol.82, 1270–1278 (2006). [CrossRef] [PubMed]
  17. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue”, Appl. Opt.37, 7429–7436 (1998). [CrossRef]
  18. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron.7, 1004–1012 (2001). [CrossRef]
  19. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt.42, 2436–2442 (2003). [CrossRef] [PubMed]
  20. H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Medical Laser Application22, 23–34 (2007). [CrossRef]
  21. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Semi-empirical model of the effect of scattering on single fiber fluorescence intensity measured on a turbid medium,” Biomed. Opt. Express3, 137–152 (2012). [CrossRef] [PubMed]
  22. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium,” Opt. Lett.37, 948–950 (2012). [CrossRef] [PubMed]
  23. M. C. Hudson, “Calculation of the maximum optical coupling efficiency into multimode optical waveguides,” Appl. Opt.13, 1029–1033 (1974). [CrossRef] [PubMed]
  24. W. H. Park, “Fluorescence lifetime sensor using optical fiber and optical signal processing,” thesis, University of Toronto (1998).
  25. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16, 5907–5925 (2008). [CrossRef] [PubMed]
  26. R. Sjoback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta A51, L7–L21 (1995). [CrossRef]
  27. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.,” Opt. Lett.36, 2791–2793 (1995). [CrossRef]
  28. N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan, and F. Fussolino, “A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence,” Dyes Pigm.3, 302–313 (2009).
  29. E. Evans, D. Berk, and A. Leung, “Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments,” Biophys. J.59, 838–848 (2001).
  30. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011). [CrossRef] [PubMed]
  31. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express2, 3150–3166 (2011). [CrossRef] [PubMed]
  32. U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett.36, 1838–1840 (2012). [CrossRef]
  33. C. L. Hoy, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method for rapid multidiameter single fiber reflectance and fluorescence spectroscopy through a fiber bundle,” J. Biomed. Opt.18, 107005 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited