OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1941–1951

Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images

Gomathy Ramaswamy, Marco Lombardo, and Nicholas Devaney  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1941-1951 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.2960) Image processing : Image analysis
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Ophthalmology Applications

Original Manuscript: February 18, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 18, 2014
Published: May 22, 2014

Gomathy Ramaswamy, Marco Lombardo, and Nicholas Devaney, "Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images," Biomed. Opt. Express 5, 1941-1951 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res.38(7), 709–721 (2013). [CrossRef] [PubMed]
  2. M. Lombardo, S. Serrao, N. Devaney, M. Parravano, and G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging,” Sensors (Basel)13(1), 334–366 (2013). [CrossRef] [PubMed]
  3. H. A. Quigley, “Glaucoma,” Lancet377(9774), 1367–1377 (2011). [CrossRef] [PubMed]
  4. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006). [CrossRef] [PubMed]
  5. H. A. Quigley and A. Sommer, “How to use nerve fiber layer examination in the management of glaucoma,” Trans. Am. Ophthalmol. Soc.85, 254–272 (1987). [PubMed]
  6. A. King, A. Azuara-Blanco, and A. Tuulonen, “Clinical review: Glaucoma,” BMJ346, 29–33 (2013). [CrossRef]
  7. WHO, “Global data on visual impairments 2010.” www.who.int/blindness/ GLOBALDATAFINALforweb.pdf
  8. L. M. Alencar, L. M. Zangwill, R. N. Weinreb, C. Bowd, P. A. Sample, C. A. Girkin, J. M. Liebmann, and F. A. Medeiros, “A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma,” Invest. Ophthalmol. Vis. Sci.51(7), 3531–3539 (2010). [CrossRef] [PubMed]
  9. O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res.51(16), 1835–1844 (2011). [CrossRef] [PubMed]
  10. T. C. Lim, S. Chattopadhyay, and U. R. Acharya, “A survey and comparative study on the instruments for glaucoma detection,” Med. Eng. Phys.34(2), 129–139 (2012). [CrossRef] [PubMed]
  11. K. Mansouri, M. T. Leite, F. A. Medeiros, C. K. Leung, and R. N. Weinreb, “Assessment of rates of structural change in glaucoma using imaging technologies,” Eye (Lond.)25(3), 269–277 (2011). [CrossRef] [PubMed]
  12. T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012). [CrossRef] [PubMed]
  13. G. Huang, X. Qi, T. Y. P. Chui, Z. Zhong, and S. A. Burns, “A clinical planning module for adaptive optics SLO imaging,” Optom. Vis. Sci.89(5), 593–601 (2012). [CrossRef] [PubMed]
  14. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011). [CrossRef] [PubMed]
  15. K. Takayama, S. Ooto, M. Hangai, N. Arakawa, S. Oshima, N. Shibata, M. Hanebuchi, T. Inoue, and N. Yoshimura, “High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy,” PLoS ONE7(3), e33158 (2012). [CrossRef] [PubMed]
  16. J. C. Russ, The image processing handbook (CRC/Taylor & Francis, 2007), Chap. 3.
  17. D. Tomazevic, B. Likar, and F. Pernus, “Comparative evaluation of retrospective shading correction methods,” J. Microsc.208(3), 212–223 (2002). [CrossRef] [PubMed]
  18. G. Ramaswamy and N. Devaney, “Pre-processing, registration and selection of adaptive optics corrected retinal images,” Ophthalmic Physiol. Opt.33(4), 527–539 (2013). [CrossRef] [PubMed]
  19. H. Li, J. Lu, G. Shi, and Y. Zhang, “Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm,” Biomed. Opt. Express1(1), 31–40 (2010). [CrossRef] [PubMed]
  20. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006). [CrossRef] [PubMed]
  21. M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults,” J. Cataract Refract. Surg.38(7), 1147–1155 (2012). [CrossRef] [PubMed]
  22. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis.5(7), 632–639 (2005). [CrossRef] [PubMed]
  23. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  24. S. Gharabaghi, S. Daneshvar, and M. H. Sedaaghi, “Retinal image registration using geometrical features,” J. Digit. Imaging26(2), 248–258 (2013). [CrossRef] [PubMed]
  25. C. D. Kuglin and D. C. Hines, “The Phase Correlation Image Alignment method,” in Proceedings of IEEE Cybernet Society (Institute of Electrical and Electronics Engineers, 1975), pp.163–165.
  26. J. Chen, R. T. Smith, J. Tian, and A. F. Laine, “A Novel Registration method for Retinal Images based on Local Features,” in Proc. of IEEE Engineering in Medicine & Biology Society, (Institute of Electrical and Electronics Engineers, 2008), pp.2242–2245. [CrossRef]
  27. J. You, W. Lu, J. Li, G. Gindi, and Z. Liang, “Image matching for translation, rotation and uniform scaling by the radon transform,” in Proceedings of International Conference on Image Processing (Institute of Electrical and Electronics Engineers, 1998), pp.847–851.
  28. T. Arodz, “Invariant Object Recognition using Radon-based Transform,” Computing and Informatics24, 183–199 (2005).
  29. E. De Castro and C. Morandi, “Registration of Translated and Rotated Images using Finite Fourier Transforms,” IEEE Trans. Pattern Anal. Mach. Intell.9(5), 700–703 (1987). [CrossRef] [PubMed]
  30. R. Matungka, Y. F. Zheng, and R. L. Ewing, “Object Recognition Using Log-Polar Wavelet Mapping,” in IEEE International Conference on Tools with Artificial Intelligence, (Institute of Electrical and Electronics Engineers, 2008), pp.559–563.
  31. B. S. Reddy and B. N. Chatterji, “An FFT-based Technique for Translation, Rotation, and Scale-Invariant Image Registration,” IEEE Trans. Image Process.5(8), 1266–1271 (1996). [CrossRef] [PubMed]
  32. G. Wolberg and S. Zokai, “Robust Image Registration using Log-Polar Transform,” in IEEE International Conference on Image Processing, (Institute of Electrical and Electronics Engineers, 2000), 493–496.
  33. G. Ramaswamy, M. Lombardo, and N. Devaney, “Texture analysis of adaptive optics assisted retinal nerve fiber layer images,” in Photonics Ireland 2013, (Belfast, 2013).
  34. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A20(4), 609–620 (2003). [CrossRef] [PubMed]
  35. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003). [CrossRef]
  36. S. Deans, The Radon Transform and some of its Applications (A Wiley-Interscience, 1983), Chap. 2.
  37. D. Young, “Straight lines and circles in the log-polar image,” in Proceedings of the 11th British Machine Vision Conference, 2000), pp.426–435. [CrossRef]
  38. R. M. Haralick, “Statistical and Structural Approaches to Texture,” Proc. IEEE67(5), 786–804 (1979). [CrossRef]
  39. R. Jain, R. Kasturi, and B. G. Schunck, “Texture,” in Machine Vision (McGraw-Hill, Inc., 1995), pp. 234–248.
  40. C. Kulcsar, G. L. Besnerais, E. Odlund, and X. Levecq, “Robust processing of images sequences produced by an adaptive optics retinal camera,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3A.3. http://www.opticsinfobase.org/abstract.cfm?URI=AOPT-2013-OW3A.3 [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited