OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1952–1964

Visualization of upconverting nanoparticles in strongly scattering media

E. V. Khaydukov, V. A. Semchishen, V. N. Seminogov, A. V. Nechaev, A. V. Zvyagin, V. I. Sokolov, A. S. Akhmanov, and V. Ya. Panchenko  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1952-1964 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical visualization systems are needed in medical applications for determining the localization of deep-seated luminescent markers in biotissues. The spatial resolution of such systems is limited by the scattering of the tissues. We present a novel epi-luminescent technique, which allows a 1.8-fold increase in the lateral spatial resolution in determining the localization of markers lying deep in a scattering medium compared to the traditional visualization techniques. This goal is attained by using NaYF4:Yb3+Tm3+@NaYF4 core/shell nanoparticles and special optical fiber probe with combined channels for the excitation and detection of anti-Stokes luminescence signals.

© 2014 Optical Society of America

OCIS Codes
(110.0113) Imaging systems : Imaging through turbid media
(160.4236) Materials : Nanomaterials

ToC Category:
Diffuse Optical Imaging

Original Manuscript: March 19, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 21, 2014
Published: May 28, 2014

E. V. Khaydukov, V. A. Semchishen, V. N. Seminogov, A. V. Nechaev, A. V. Zvyagin, V. I. Sokolov, A. S. Akhmanov, and V. Ya. Panchenko, "Visualization of upconverting nanoparticles in strongly scattering media," Biomed. Opt. Express 5, 1952-1964 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, “Going Deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  3. X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009). [CrossRef]
  4. K. Welsher, S. P. Sherlock, and H. J. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U.S.A.108(22), 8943–8948 (2011). [CrossRef] [PubMed]
  5. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007). [CrossRef] [PubMed]
  6. D. Hyde, R. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage44(4), 1304–1311 (2009). [CrossRef] [PubMed]
  7. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an Annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004). [CrossRef] [PubMed]
  8. A. Soubret and V. Ntziachristos, “Fluorescence molecular tomography in the presence of background fluorescence,” Phys. Med. Biol.51(16), 3983–4001 (2006). [CrossRef] [PubMed]
  9. E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol.216(3), 275–285 (2008). [CrossRef] [PubMed]
  10. A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009). [CrossRef] [PubMed]
  11. Y. T. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt.48(7), 1328–1336 (2009). [CrossRef] [PubMed]
  12. C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A26(5), 1277–1290 (2009). [CrossRef] [PubMed]
  13. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010). [CrossRef] [PubMed]
  14. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics,” Chem. Rev., (2014), http://pubs.acs.org/doi/abs/10.1021/cr400425h . [CrossRef]
  15. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl.50(26), 5808–5829 (2011). [CrossRef] [PubMed]
  16. A. Nadort, V. K. A. Sreenivasan, Z. Song, E. A. Grebenik, A. V. Nechaev, V. A. Semchishen, V. Ya. Panchenko, and A. V. Zvyagin, “Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue,” PLoS ONE8(5), e63292 (2013). [CrossRef] [PubMed]
  17. E. A. Grebenik, A. Nadort, A. N. Generalova, A. V. Nechaev, V. K. A. Sreenivasan, E. V. Khaydukov, V. A. Semchishen, A. P. Popov, V. I. Sokolov, A. S. Akhmanov, V. P. Zubov, D. V. Klinov, V. Ya. Panchenko, S. M. Deyev, and A. V. Zvyagin, “Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes,” J. Biomed. Opt.18(7), 076004 (2013). [CrossRef] [PubMed]
  18. J. C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale2(8), 1417–1419 (2010). [CrossRef] [PubMed]
  19. C. T. Xu, J. Axelsson, and S. Andersson-Engels, “Fluorescence diffuse optical tomography using upconverting nanoparticles,” Appl. Phys. Lett.94(25), 251107 (2009). [CrossRef]
  20. P. Svenmarker, C. T. Xu, and S. Andersson-Engels, “Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging,” Opt. Lett.35(16), 2789–2791 (2010). [CrossRef] [PubMed]
  21. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano6(6), 4788–4795 (2012). [CrossRef] [PubMed]
  22. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  23. A. P. Popov, A. V. Karmenyan, A. V. Bykov, E. V. Khaydukov, A. V. Nechaev, O. A. Bibikova, V. Ya. Panchenko, V. A. Semchishen, V. N. Seminogov, A. S. Akhmanov, V. I. Sokolov, M. T. Kinnunen, V. V. Tuchin, and A. V. Zvyagin, “High-resolution deep-tissue optical imaging using anti-Stokes phosphors,” Proc. SPIE8801, 88010C (2013). [CrossRef]
  24. Max Born and Emil Wolf, Principles of Optics (Pergamon Press, 1970).
  25. G. S. Landsberg, Optics (Nauka, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited