OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 6 — Jun. 1, 2014
  • pp: 1965–1979

In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors

Jennifer A. Lee, Nikolett M. Biel, Raymond T. Kozikowski, Dietmar W. Siemann, and Brian S. Sorg  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 6, pp. 1965-1979 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5592 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vascular targeting agents on their own have been shown to be insufficient for complete treatment of solid tumors, emphasizing the importance of studying the vascular effects of these drugs for their use with conventional therapies in the clinic. First-pass fluorescence imaging combined with hyperspectral imaging of hemoglobin saturation of microvessels in the murine dorsal window chamber model provides an easily implementable, low cost method to analyze tumor vascular response to these agents in real-time. In this study, the authors utilized these methods to spectroscopically demonstrate distinct vessel structure, blood flow and oxygenation changes in human Caki-2 renal cell carcinoma following treatment with OXi4503 alone, Sunitinib alone and both drugs together. We showed that treatment with OXi4503 plus Sunitinib destroyed existing tumor microvessels, inhibited blood vessel recovery and impaired Caki-2 tumor growth significantly more than either treatment alone.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(170.0180) Medical optics and biotechnology : Microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Optics in Cancer Research

Original Manuscript: April 17, 2014
Revised Manuscript: May 16, 2014
Manuscript Accepted: May 16, 2014
Published: May 28, 2014

Jennifer A. Lee, Nikolett M. Biel, Raymond T. Kozikowski, Dietmar W. Siemann, and Brian S. Sorg, "In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors," Biomed. Opt. Express 5, 1965-1979 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Horsman and D. W. Siemann, “Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies,” Cancer Res.66(24), 11520–11539 (2006). [CrossRef] [PubMed]
  2. J. Folkman, “Tumor angiogenesis: therapeutic Implications,” N. Engl. J. Med.285(21), 1182–1186 (1971). [CrossRef] [PubMed]
  3. R. K. Jain, “Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy,” Science307(5706), 58–62 (2005). [CrossRef] [PubMed]
  4. P. E. Thorpe, “Vascular targeting agents as cancer therapeutics,” Clin. Cancer Res.10(2), 415–427 (2004). [CrossRef] [PubMed]
  5. D. W. Siemann, M. C. Bibby, G. G. Dark, A. P. Dicker, F. A. L. M. Eskens, M. R. Horsman, D. Marmé, and P. M. Lorusso, “Differentiation and definition of vascular-targeted therapies,” Clin. Cancer Res.11(2 Pt 1), 416–420 (2005). [PubMed]
  6. G. M. Tozer, C. Kanthou, G. Lewis, V. E. Prise, B. Vojnovic, and S. A. Hill, “Tumour vascular disrupting agents: combating treatment resistance,” Br. J. Radiol.81(Spec No 1), S12–S20 (2008). [CrossRef] [PubMed]
  7. J. G. Christensen, “A preclinical review of sunitinib, a multitargeted receptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities,” Ann. Oncol.18(Suppl 10), x3–x10 (2007). [CrossRef] [PubMed]
  8. Y. Z. Sheng, J. Y. Hua, K. G. Pinney, C. M. Garner, R. R. Kane, J. A. Prezioso, D. J. Chaplin, and K. Edvardsen, “Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis,” Int. J. Cancer111(4), 604–610 (2004). [CrossRef] [PubMed]
  9. D. W. Siemann, “The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents,” Cancer Treat. Rev.37(1), 63–74 (2011). [CrossRef] [PubMed]
  10. B. A. Teicher, “Antiangiogenic agents and targets: a perspective,” Biochem. Pharmacol.81(1), 6–12 (2011). [CrossRef] [PubMed]
  11. P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature473(7347), 298–307 (2011). [CrossRef] [PubMed]
  12. J. V. Gaustad, T. G. Simonsen, M. N. Leinaas, and E. K. Rofstad, “Sunitinib treatment does not improve blood supply but induces hypoxia in human melanoma xenografts,” BMC Cancer12(1), 388 (2012). [CrossRef] [PubMed]
  13. D. W. Siemann and W. Y. Shi, “Dual targeting of tumor vasculature: Combining avastin and vascular disrupting agents (CA4P or OXi4503),” Anticancer Res.28(4B), 2027–2031 (2008). [PubMed]
  14. W. Y. Shi and D. W. Siemann, “Targeting the tumor vasculature: Enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474,” In Vivo19(6), 1045–1050 (2005). [PubMed]
  15. H. L. Anderson, J. T. Yap, M. P. Miller, A. Robbins, T. Jones, and P. M. Price, “Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate,” J. Clin. Oncol.21(15), 2823–2830 (2003). [CrossRef] [PubMed]
  16. J. H. Tai, J. Tessier, A. J. Ryan, L. Hoffman, X. Chen, and T. Y. Lee, “Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat,” Neoplasia12(9), 697–707 (2010). [PubMed]
  17. T. Nielsen, T. Wittenborn, and M. R. Horsman, “Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in preclinical studies of antivascular treatments,” Pharmaceutics4(4), 563–589 (2012). [CrossRef] [PubMed]
  18. J. V. Gaustad, K. G. Brurberg, T. G. Simonsen, C. S. Mollatt, and E. K. Rofstad, “Tumor vascularity assessed by magnetic resonance imaging and intravital microscopy imaging,” Neoplasia10(4), 354–362 (2008). [PubMed]
  19. S. Dufort, L. Sancey, C. Wenk, V. Josserand, and J. L. Coll, “Optical small animal imaging in the drug discovery process,” Biochim. Biophys. Acta1798(12), 2266–2273 (2010). [CrossRef] [PubMed]
  20. G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc.6(9), 1355–1366 (2011). [CrossRef] [PubMed]
  21. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med.9(6), 713–725 (2003). [CrossRef] [PubMed]
  22. J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “Combination of spectral and fluorescence imaging microscopy for wide-field in vivo analysis of microvessel blood supply and oxygenation,” Opt. Lett.38(3), 332–334 (2013). [CrossRef] [PubMed]
  23. M. Wankhede, C. Dedeugd, D. W. Siemann, and B. S. Sorg, “In vivo functional differences in microvascular response of 4T1 and Caki-1 tumors after treatment with OXi4503,” Oncol. Rep.23(3), 685–692 (2010). [PubMed]
  24. K. G. Brurberg, B. A. Graff, and E. K. Rofstad, “Temporal heterogeneity in oxygen tension in human melanoma xenografts,” Br. J. Cancer89(2), 350–356 (2003). [CrossRef] [PubMed]
  25. K. S. Øye, G. Gulati, B. A. Graff, J. V. Gaustad, K. G. Brurberg, and E. K. Rofstad, “A novel method for mapping the heterogeneity in blood supply to normal and malignant tissues in the mouse dorsal window chamber,” Microvasc. Res.75(2), 179–187 (2008). [CrossRef] [PubMed]
  26. B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005). [CrossRef] [PubMed]
  27. A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids,” J. Mol. Biol.13(1), 238–252 (1965). [CrossRef] [PubMed]
  28. R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J.73(3), 1223–1231 (1997). [CrossRef] [PubMed]
  29. R. E. Durand and N. E. Lepard, “Contribution of transient blood-flow to tumor hypoxia in mice,” Acta Oncol. (Madr.)34(3), 317–323 (1995). [CrossRef]
  30. M. J. Machado and C. A. Mitchell, “Temporal changes in microvessel leakiness during wound healing discriminated by in vivo fluorescence recovery after photobleaching,” J. Physiol.589(19), 4681–4696 (2011). [CrossRef] [PubMed]
  31. G. M. Tozer, S. Akerman, N. A. Cross, P. R. Barber, M. A. Björndahl, O. Greco, S. Harris, S. A. Hill, D. J. Honess, C. R. Ireson, K. L. Pettyjohn, V. E. Prise, C. C. Reyes-Aldasoro, C. Ruhrberg, D. T. Shima, and C. Kanthou, “Blood vessel maturation and response to vascular-disrupting therapy in single vascular endothelial growth factor-A isoform-producing tumors,” Cancer Res.68(7), 2301–2311 (2008). [CrossRef] [PubMed]
  32. M. R. Dreher, W. G. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti, “Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers,” J. Natl. Cancer Inst.98(5), 335–344 (2006). [CrossRef] [PubMed]
  33. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer12(5), 363–368 (2012). [CrossRef] [PubMed]
  34. A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, “Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber,” Microvasc. Res.82(3), 199–209 (2011). [CrossRef] [PubMed]
  35. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt.13(4), 044007 (2008). [CrossRef] [PubMed]
  36. M. C. Skala, A. Fontanella, H. Hendargo, M. W. Dewhirst, and J. A. Izatt, “Combined hyperspectral and spectral domain optical coherence tomography microscope for noninvasive hemodynamic imaging,” Opt. Lett.34(3), 289–291 (2009). [CrossRef] [PubMed]
  37. C. deDeugd, M. Wankhede, and B. S. Sorg, “Multimodal optical imaging of microvessel network convective oxygen transport dynamics,” Appl. Opt.48(10), D187–D197 (2009). [CrossRef] [PubMed]
  38. A. N. Fontanella, T. Schroeder, D. W. Hochman, R. E. Chen, G. Hanna, M. M. Haglund, T. W. Secomb, G. M. Palmer, and M. W. Dewhirst, “Quantitative mapping of hemodynamics in the lung, brain, and dorsal window chamber-grown tumors using a novel, automated algorithm,” Microcirculation20(8), 724–735 (2013). [PubMed]
  39. K. L. Osusky, D. E. Hallahan, A. Fu, F. Ye, Y. Shyr, and L. Geng, “The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels,” Angiogenesis7(3), 225–233 (2004). [CrossRef] [PubMed]
  40. G. M. Tozer, V. E. Prise, J. Wilson, M. Cemazar, S. Shan, M. W. Dewhirst, P. R. Barber, B. Vojnovic, and D. J. Chaplin, “Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability,” Cancer Res.61(17), 6413–6422 (2001). [PubMed]
  41. R. T. Ullrich, J. F. Jikeli, M. Diedenhofen, P. Böhm-Sturm, M. Unruh, S. Vollmar, and M. Hoehn, “In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice,” PLoS ONE6(5), e19592 (2011). [CrossRef] [PubMed]
  42. J. A. Nagy, S. H. Chang, A. M. Dvorak, and H. F. Dvorak, “Why are tumour blood vessels abnormal and why is it important to know?” Br. J. Cancer100(6), 865–869 (2009). [CrossRef] [PubMed]
  43. D. W. Siemann and W. Y. Shi, “Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors,” Int. J. Radiat. Oncol. Biol. Phys.60(4), 1233–1240 (2004). [CrossRef] [PubMed]
  44. G. J. Madlambayan, A. M. Meacham, K. Hosaka, S. Mir, M. Jorgensen, E. W. Scott, D. W. Siemann, and C. R. Cogle, “Leukemia regression by vascular disruption and antiangiogenic therapy,” Blood116(9), 1539–1547 (2010). [CrossRef] [PubMed]
  45. M. Taylor, F. Billiot, V. Marty, V. Rouffiac, P. Cohen, E. Tournay, P. Opolon, F. Louache, G. Vassal, C. Laplace-Builhé, P. Vielh, J. C. Soria, and F. Farace, “Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells,” Cancer Discov.2(5), 434–449 (2012). [CrossRef] [PubMed]
  46. H. W. Salmon and D. W. Siemann, “Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity,” Clin. Cancer Res.12(13), 4090–4094 (2006). [CrossRef] [PubMed]
  47. C. Malcontenti-Wilson, L. Chan, M. Nikfarjam, V. Muralidharan, and C. Christophi, “Vascular targeting agent Oxi4503 inhibits tumor growth in a colorectal liver metastases model,” J. Gastroenterol. Hepatol.23(7 Pt 2), e96–e104 (2008). [CrossRef] [PubMed]
  48. J. Y. Hua, Y. Z. Sheng, K. G. Pinney, C. M. Garner, R. R. Kane, J. A. Prezioso, G. R. Pettit, D. J. Chaplin, and K. Edvardsen, “Oxi4503, a novel vascular targeting agent: Effects on blood flow and antitumor activity in comparison to combretastatin A-4 phosphate,” Anticancer Res.23(2B), 1433–1440 (2003). [PubMed]
  49. L. Nguyen, T. Fifis, C. Malcontenti-Wilson, L. S. Chan, P. N. Costa, M. Nikfarjam, V. Muralidharan, and C. Christophi, “Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments,” BMC Cancer12(1), 522 (2012). [CrossRef] [PubMed]
  50. F. Winkler, S. V. Kozin, R. T. Tong, S. S. Chae, M. F. Booth, I. Garkavtsev, L. Xu, D. J. Hicklin, D. Fukumura, E. di Tomaso, L. L. Munn, and R. K. Jain, “Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases,” Cancer Cell6(6), 553–563 (2004). [PubMed]
  51. M. Czabanka, M. Vinci, F. Heppner, A. Ullrich, and P. Vajkoczy, “Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy,” Int. J. Cancer124(6), 1293–1300 (2009). [CrossRef] [PubMed]
  52. G. G. Hillman, V. Singh-Gupta, H. Zhang, A. K. Al-Bashir, Y. Katkuri, M. Li, C. K. Yunker, A. D. Patel, J. Abrams, and E. M. Haacke, “Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Vascular Changes Induced by Sunitinib in Papillary Renal Cell Carcinoma Xenograft Tumors,” Neoplasia11(9), 910–920 (2009). [PubMed]
  53. A. D. Yang, T. W. Bauer, E. R. Camp, R. Somcio, W. B. Liu, F. Fan, and L. M. Ellis, “Improving delivery of antineoplastic agents with anti-vascular endothelial growth factor therapy,” Cancer103(8), 1561–1570 (2005). [CrossRef] [PubMed]
  54. S. Matsumoto, S. Batra, K. Saito, H. Yasui, R. Choudhuri, C. Gadisetti, S. Subramanian, N. Devasahayam, J. P. Munasinghe, J. B. Mitchell, and M. C. Krishna, “Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia,” Cancer Res.71(20), 6350–6359 (2011). [CrossRef] [PubMed]
  55. T. W. Secomb, R. Hsu, E. T. Ong, J. F. Gross, and M. W. Dewhirst, “Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors,” Acta Oncol.34(3), 313–316 (1995). [CrossRef] [PubMed]
  56. D. W. Siemann and W. Shi, “Dual-agent targeting of the tumor vasculature: combining avastin with CA4P or OXi4503,” Clin. Cancer Res.11, 8968S (2005).
  57. V. Moreno Garcia, B. Basu, L. R. Molife, and S. B. Kaye, “Combining antiangiogenics to overcome resistance: rationale and clinical experience,” Clin. Cancer Res.18(14), 3750–3761 (2012). [CrossRef] [PubMed]
  58. P. Nathan, M. Zweifel, A. R. Padhani, D. M. Koh, M. Ng, D. J. Collins, A. Harris, C. Carden, J. Smythe, N. Fisher, N. J. Taylor, J. J. Stirling, S. P. Lu, M. O. Leach, G. J. S. Rustin, and I. Judson, “Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer,” Clin. Cancer Res.18(12), 3428–3439 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited