OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 5, Iss. 7 — Jul. 1, 2014
  • pp: 1980–1992

Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

Shang Wang, Andrew L. Lopez, III, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin  »View Author Affiliations

Biomedical Optics Express, Vol. 5, Issue 7, pp. 1980-1992 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a quantitative optical elastographic method based on shear wave imaging optical coherence tomography (SWI-OCT) for biomechanical characterization of cardiac muscle through noncontact elasticity measurement. The SWI-OCT system employs a focused air-puff device for localized loading of the cardiac muscle and utilizes phase-sensitive OCT to monitor the induced tissue deformation. Phase information from the optical interferometry is used to reconstruct 2-D depth-resolved shear wave propagation inside the muscle tissue. Cross-correlation of the displacement profiles at various spatial locations in the propagation direction is applied to measure the group velocity of the shear waves, based on which the Young’s modulus of tissue is quantified. The quantitative feature and measurement accuracy of this method is demonstrated from the experiments on tissue-mimicking phantoms with the verification using uniaxial compression test. The experiments are performed on ex vivo cardiac muscle tissue from mice with normal and genetically altered myocardium. Our results indicate this optical elastographic technique is useful as a noncontact tool to assist the cardiac muscle studies.

© 2014 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

Original Manuscript: April 15, 2014
Revised Manuscript: May 21, 2014
Manuscript Accepted: May 23, 2014
Published: May 30, 2014

Shang Wang, Andrew L. Lopez, Yuka Morikawa, Ge Tao, Jiasong Li, Irina V. Larina, James F. Martin, and Kirill V. Larin, "Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography," Biomed. Opt. Express 5, 1980-1992 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. Murphy, J. Xu, and K. D. Kochanek, “Deaths: Final Data for 2010,” Natl. Vital Stat. Rep.61, 1–117 (2013).
  2. M. Mercola, P. Ruiz-Lozano, and M. D. Schneider, “Cardiac muscle regeneration: lessons from development,” Genes Dev.25(4), 299–309 (2011). [CrossRef] [PubMed]
  3. T. Heallen, Y. Morikawa, J. Leach, G. Tao, J. T. Willerson, R. L. Johnson, and J. F. Martin, “Hippo signaling impedes adult heart regeneration,” Development140(23), 4683–4690 (2013). [CrossRef] [PubMed]
  4. M. Xin, Y. Kim, L. B. Sutherland, M. Murakami, X. Qi, J. McAnally, E. R. Porrello, A. I. Mahmoud, W. Tan, J. M. Shelton, J. A. Richardson, H. A. Sadek, R. Bassel-Duby, and E. N. Olson, “Hippo pathway effector Yap promotes cardiac regeneration,” Proc. Natl. Acad. Sci. U.S.A.110(34), 13839–13844 (2013). [CrossRef] [PubMed]
  5. H. Jawad, A. R. Lyon, S. E. Harding, N. N. Ali, and A. R. Boccaccini, “Myocardial tissue engineering,” Br. Med. Bull.87(1), 31–47 (2008). [CrossRef] [PubMed]
  6. R. M. Setser, N. G. Smedira, M. L. Lieber, E. D. Sabo, and R. D. White, “Left ventricular torsional mechanics after left ventricular reconstruction surgery for ischemic cardiomyopathy,” J. Thorac. Cardiovasc. Surg.134(4), 888–896 (2007). [CrossRef] [PubMed]
  7. T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron38(8), 824–833 (2007). [CrossRef] [PubMed]
  8. A. B. Mathur, A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey, “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,” J. Biomech.34(12), 1545–1553 (2001). [CrossRef] [PubMed]
  9. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998). [CrossRef] [PubMed]
  10. Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, “Magnetic resonance elastography: a review,” Clin. Anat.23(5), 497–511 (2010). [CrossRef] [PubMed]
  11. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  12. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012). [CrossRef] [PubMed]
  13. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010). [CrossRef] [PubMed]
  14. V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013). [CrossRef] [PubMed]
  15. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012). [CrossRef] [PubMed]
  16. A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express4(10), 2138–2149 (2013). [CrossRef] [PubMed]
  17. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  18. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011). [CrossRef] [PubMed]
  19. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012). [CrossRef] [PubMed]
  20. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express18(13), 14183–14190 (2010). [CrossRef] [PubMed]
  21. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 1–17 (2014). [CrossRef]
  22. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011). [CrossRef] [PubMed]
  23. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: a review,” J. Innov. Opt. Health Sci.3(4), 221–233 (2010). [CrossRef] [PubMed]
  24. K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013). [CrossRef] [PubMed]
  25. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  26. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009). [CrossRef] [PubMed]
  27. A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol.55(4), 1189–1201 (2010). [CrossRef] [PubMed]
  28. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011). [CrossRef] [PubMed]
  29. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012). [CrossRef] [PubMed]
  30. T. M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt.19(1), 016013 (2014). [CrossRef] [PubMed]
  31. S. Song, Z. Huang, T. M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121509 (2013). [CrossRef] [PubMed]
  32. T.-M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett.39(4), 838–841 (2014). [CrossRef] [PubMed]
  33. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012). [CrossRef] [PubMed]
  34. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012). [CrossRef] [PubMed]
  35. X. Liang and S. A. Boppart, “Biomechanical properties of In vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng.57(4), 953–959 (2010). [CrossRef] [PubMed]
  36. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012). [CrossRef] [PubMed]
  37. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett.39(1), 41–44 (2014). [CrossRef] [PubMed]
  38. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013). [CrossRef]
  39. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt.18(12), 121505 (2013). [CrossRef] [PubMed]
  40. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004). [CrossRef] [PubMed]
  41. P. N. Wells and H. D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface8(64), 1521–1549 (2011). [CrossRef] [PubMed]
  42. A. Biernacka and N. G. Frangogiannis, “Aging and Cardiac Fibrosis,” Aging Dis.2(2), 158–173 (2011). [PubMed]
  43. M. Fink and M. Tanter, “Multiwave imaging and super resolution,” Print edition 63, 28–33 (2010).
  44. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  45. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  46. S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(1), 55–62 (2009). [CrossRef] [PubMed]
  47. W. Hiesinger, M. J. Brukman, R. C. McCormick, J. R. Fitzpatrick, J. R. Frederick, E. C. Yang, J. R. Muenzer, N. A. Marotta, M. F. Berry, P. Atluri, and Y. J. Woo, “Myocardial tissue elastic properties determined by atomic force microscopy after stromal cell-derived factor 1α angiogenic therapy for acute myocardial infarction in a murine model,” J. Thorac. Cardiovasc. Surg.143(4), 962–966 (2012). [CrossRef] [PubMed]
  48. R. C. Chivers, “Tissue characterization,” Ultrasound Med. Biol.7(1), 1–20 (1981). [CrossRef] [PubMed]
  49. B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014). [CrossRef] [PubMed]
  50. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express4(3), 460–465 (2013). [CrossRef] [PubMed]
  51. M. Razani, T. W. H. Luk, A. Mariampillai, P. Siegler, T.-R. Kiehl, M. C. Kolios, and V. X. D. Yang, “Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples,” Biomed. Opt. Express5(3), 895–906 (2014). [CrossRef] [PubMed]
  52. D. G. Melrose, B. Dreyer, H. H. Bentall, and J. B. E. Baker, “Elective Cardiac Arrest,” Lancet266(6879), 21–23 (1955). [CrossRef] [PubMed]
  53. I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures,” Biomed. Opt. Express3(3), 650–660 (2012). [CrossRef] [PubMed]
  54. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt.10(5), 054001 (2005). [CrossRef] [PubMed]
  55. M. W. Jenkins, Y. T. Wang, Y. Q. Doughman, M. Watanabe, Y. Cheng, and A. M. Rollins, “Optical pacing of the adult rabbit heart,” Biomed. Opt. Express4(9), 1626–1635 (2013). [CrossRef] [PubMed]
  56. J. Xia, R. D. Miller, and C. B. Park, “Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves,” Geophysics64(3), 691–700 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (1929 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited